MARCELO SHINMYO
MARCO ANTONIO GROTKOWSKY

PROJETO DE BANCADA DE TESTES PARA

SISTEMAS DE CONTROLE DISTRIBUIDOS
UTILIZANDO MOTORES C.C.

S3o Paulo
2010

MARCELO SHINMYO
MARCO ANTONIO GROTKOWSKY

PROJETO DE BANCADA DE TESTES PARA

SISTEMAS DE CONTROLE DISTRIBUIDOS
UTILIZANDO MOTORES C.C.

Monografia apresentada a Escola
Politécnica da Universidade de Sao

Paulo.

Orientador:
Prof. Dr. Newton Maruyama

S3o Paulo
2010

FICHA CATALOGRAFICA

Shinmyo, Marcelo

Projeto de bancada de testes para sistemas de controle dis-
tribuidos utilizando motores C.C. / M. Shinmyo, M.A.
Grotkowsky. -- Sdao Paulo, 2010.

66 p.

Trabalho de Formatura - Escola Politécnica da Universidade
de Sao Paulo. Departamento de Engenharia Mecatrénica e de
Sistemas Mecanicos.

1. Sistemas distribuidos 2. Algoritmos de Scheduling
3. Controle (Teoria de sistemas e controle) |. Grotkowsky,
Marco Antonio Il. Universidade de Sao Paulo. Escola Politéc-
nica. Departamento de Engenharia Mecatrénica e de Sistemas
Mecanicos lIl. t.

DEDICATORIA

Dedicamos este trabalho a nossas familias.

AGRADECIMENTOS

Agradecemos a nossas familias, ao técnico Carlos Alberto de Souza Lima, e ao professor

orientador Newton Maruyama.

RESUMO

Objetiva-se nesse trabalho a construcao de uma plataforma de testes para sistemas de
controle distribuidos em redes de comunicacao com o uso de motores de corrente continua. A
plataforma é composta de um motor a ser controlado e um motor atuando como gerador de
disttrbios de torque, ambos acoplados por uma inércia variavel. Microcontroladores TINI sdo
aplicados no transporte de informacdes correspondentes a velocidade angular para uma rede
de comunicacdo CAN e para repassar os sinais correspondentes as acdes de controle para os
drivers de acionamento. Para as tarefas que calculam as acbes de controle, é utilizado um
sistema baseado no microcontrolador ARM7. As plataformas foram modeladas e simuladas
no microcontrolador TINI, atuando como nés na rede CAN e introduzindo atrasos. Por meio
do sistema distribuido, é possivel analisar: o desempenho do protocolo de comunicacao CAN;
a influéncia dos algoritmos de controle em sistemas operacionais de tempo real (controlador
proporcional-integral, controlador com compensacao de atraso do tempo de amostragem, con-
trolador utilizando técnica Subtask Scheduling).

ABSTRACT

This work deals with the implementation of a testbed for networked control systems using
DC motors. The platform is composed by the controlled motor and another motor actuating
as a torque disturbance generator, both coupled with a variable inertia. TINI microcontrollers
are applied on information transport from the position and torque sensors to the network and
to transmit the control action signal to the actuation drivers. For the control action calculation
tasks, an ARM7 based system is used. In order to plan the required computational power of
a networked controls system, we have devised an experimental setup with a single processing
unit node (Keil ARM7 Board) and nodes that simulates distributed plants (TINI). At first,
we evaluate network time-delay distributions and packet losses while increasing the number
of distributed plant nodes. Later we propose some computational techniques that introduces
modifications on the classical control algorithms (like sampling time adaption, subtask schedul-
ing, etc.) that can improve the control performance. At the end of this work, we draw some
preliminary conclusions about the resulting controllers performance.

2.1

2.2

2.3

2.4

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

LISTA DE FIGURAS

Atrasos indeterministicos no loop de controle.
Protocolo SPI (Serial Peripheral Interface).
Microcontrolador TINI
Placa de desenvolvimento MCB2300 com Microprocessador ARM 7
Concepcao da plataforma de testes
Modelo em trés dimensdes do kit mecanico.
Modelo renderizado em trés dimensdes do kit mecénico.
Mancal KSTM-10 fabricado pela lgus.
Polias modelos 173M9 e 303M9 fabricados pela Schneider.
Encoder série 40, fabricado pela Hohner.
Plataforma de testes.
Conjunto de quatro plataformas de testes.
Tabela de custos relacionados a matéria prima.
Desenhos e curva do motor Canon FN38 utilizado no projeto.

Plataforma Elétrica com fonte, drivers de acionamento, e microprocessadores

Driver modelo PN420 projetado pela Peres e Noris Automacdo Ltda.
Esquema para identificacdo do sistema.
Placa de aquisicao de dados PCI-6024E da National Instruments
Conector externo de 68 pinos da placa de aquisi¢do.
Ponta do cabo CAN com resistor terminador).

Looping de controle utilizado. oL

20

45

3.18

3.19

3.20

3.21

3.22

3.23

4.1

4.2

4.3

4.4

7.1

7.2

7.3

Diagrama de Bode ilustrando efeito de atrasos no periodo de amostragem. . . 46

Coeficientes da equacao de diferencas do controlador compensado. 47
Placa Peak Pcan Pci utilizada para monitorar a rede CAN. 48
Software Pcan Explorer 4 utilizado para aquisicao dos dados que trafegam na

rede CAN. 48
Esquema da simulacdo do sitema distribuido. 50
Simulacdo do Sistema Distribuido. 51

Controlador PI: Sinal de saida e de atuagdo para um conjunto planta-controlador 54

Controlador Pl com compensacdo: Sinal de saida e de atuagdo para um con-

junto planta-controladoro 55

Controlador Pl divido em Subtasks: Sinal de saida e de atuagdo para um

conjunto planta-controlador 55
Histogramas para os Tempos de Amostragem 56
Biblioteca de blocos do TrueTime 61
Controlador Pl implementado em Simulink-Matlab 61

Esquema utilizando biblioteca TrueTime. 62

1

SUMARIO

Introducido 9
1.1 Objetivo 9
1.2 Motivagdo L 9
1.3 Organizagdo do Documento 10
Conceitos e Tecnologias Envolvidas 12
2.1 Indeterminismo Temporal 12
2.2 Técnicas de Escalonamento de Processos 13
2.3 Subtask-Scheduling 14
2.4 Protocolos de Comunicagao 15
241 O Protocolo CAN 15
242 O ProtocoloSPlI 19
2.5 O Microcontrolador TINI 20
2.6 O Sistema Baseado no Microcontrolador ARM7 22
2.7 O Sistema Operacional de Tempo Real RTX 22
2.7.1 Tasks (Tarefas) 23
2.7.2 Eventos 23
2.7.3 Semaforos 23
274 Mutex 24
275 Mailbox 24
2.7.6 Travamento e Destravamento de Tasks 25

2.7.7 Configuragdo 26

2.7.8 Opgoes de Escalonamentono RTX 26

3 Metodologia 27
3.1 Concepc¢do da Plataformade Testes 27
3.1.1 A Plataforma Mecdnica 28
3.1.2 A Plataforma Elétrica L. 29

3.2 Modelagem e ldentificacdo da Planta da Plataforma 35
3.2.1 Modelagem do Sistema 35
3.2.2 ldentificacdo do Sistema 38

3.3 Redes de comunicagdo 39
3.3.1 Configuragio darede CAN 39
3.3.2 Comunicagdo SPl 43

3.4 Controledo Sistema 44
34.1 Controlador Pl 45
3.4.2 Controlador Pl com Compensacdo 45
3.4.3 Controlador Pl dividido em Subtasks 47

3.5 Dificuldades encontradas 47
3.6 Aquisicao e Tratamentode Dados 47
3.7 Simulagdo de Sistema Distribuido 49
4 Resultados 52
4.1 Plataforma Mecanica 52
42 BridgedeRede 52
4.3 Software de Controle 52
4.4 Simulagdo do Sistema Distribuidoo 53
45 Andlise dos Controladores 53

45.1 Controlador Pl 53

4.5.2 Controlador Pl com Compensacio

45.3 Controlador Pl dividido em Subtasks

4.6 Andlise da Variacdo do Tempo de Amostragem

Conclusao

Bibliografia

Apéndice

7.1 Uma ferramenta de analise

A ferramenta TrueTime

58

59

60

12

1 INTRODUCAO

1.1 Objetivo

Objetiva-se nesse trabalho a construcdo de uma plataforma de testes para sistemas de

controle distribuidos em redes de comunicacdo com o uso de motores de corrente continua.

Analisa-se do uso do protocolo de comunicacao CAN como meio de transmissao de sinais
entre plantas e controlador. Verifica-se a interferéncia de atrasos deterministicos ou nao-

deterministicos no desempenho do sistema de controle.

Como terceiro objetivo, estuda-se a influéncia de algoritmos de controle em sistemas
operacionais de tempo real. S3o estudados controlador Proporcional-Integral, controlador

com compensac¢ao de atrasos no tempo de amostragem, e controlador utilizando a técnica de
Subtask Scheduling.

Com isso, esse trabalho visa o estudo de técnicas de co-projeto (co-design), que é o projeto

do sistema de controle levando-se em consideragdo o algoritmo de escalonamento.

1.2 Motivacao

Produtos modernos como carros, celulares, MP3/DVD players, video games, utilizam sis-
temas embarcados para implementar muitas de suas funcionalidades. Essas, por sua vez, ne-
cessitam de recursos computacionais fisicos (hardware) que executam operacdes pré-definidas

em um software.

Sistemas de controle embarcado geralmente possuem varios processos sendo executados
paralelamente, inclusive varios processos de controle. Dessa forma, o escalonamento de tarefas
se torna importante pois decide qual processo serd executado em um determinado instante.
Desde meados de 1970 o interesse académico em escalonamento tem sido grande, mas pouco
trabalho focou nas tarefas de controle. Além disso, a teoria de controle ndo estuda o prob-

lema dos recursos de hardware limitados ou compartilhados. Em vez disso, assume-se que o

13

controlador utiliza um computador dedicado.

Nao ha, em geral, incentivo para se estudar a possibilidade de conciliar o desenvolvimento
do sistema de controle com a estratégia de escalonamento dos processos, uma vez que o au-
mento do poder de processamento resolve os problemas de desempenho do sistema. Apesar
disso, os fabricantes ainda demonstram dificuldades em alocar tarefas em processadores alta-

mente carregados, considerando que visa-se a utilizacao do hardware mais econémico possivel.

Os sistemas de controle atuais geralmente s3o distribuidos em uma rede, onde sensores e
atuadores se encontram em diferentes nés. S3o, também, tratados como componentes de soft-
ware e espera-se que eles possam suportar mudancas de hardware, upgrades online, etc. Dessa
forma, esses sistemas apresentam alta flexibilidade. Por outro lado, sdo ndo deterministicos,

introduzindo variacdes de tempo que prejudicam o desempenho do controlador.

Consequentemente, para se obter melhor desempenho no controle quando se dispor de
recursos de hardware limitados, deve-se integrar o projeto do controlador com o projeto do

escalonador de processos [3].

1.3 Organizacao do Documento
Este documento foi estruturado da seguinte maneira:

e Capitulo 1 (Introdugdo):

Apresenta objetivo, motivacdo, e a forma em que o documento esta organizado.

e Capitulo 2 (Conceitos e Tecnologias Envolvidas):

Conceitos sobre indeterminismo temporal. Descricao das técnicas de escalonamento de
processos Fixed Priority (FP) e Earliest Deadline First (EDF). Subtask-Scheduling. Ap-
resentacdo dos protocolos de comunicacdo SPle CAN. Descricdo dos microcontroladores

TINI e ARM7. Sistema operacional de tempo real RTX.

e Capitulo 3 (Metodologia):

Descreve a concepcdo da plataforma de testes. Apresentacdo do kit mecanico e elétrico
com os respectivos desenhos esquematicos e especificacdes. Modelagem e Identificagdo
da Planta da Plataforma. Configuracdo da rede CAN e SPI. Técnicas de Controle

utilizadas. Aquisicdo e tratamento dos dados, e simulagdo do Sistema Distribuido.

e Capitulo 4 (Resultados):

14

Apresenta os resultados obtidos, como: Plataforma Mecanica, Bridge de Rede, Software
de Controle, Simulacdo de Controle, Simulacdo do Sistema Distribuido, Analise dos

Controladores e dos atrasos.

e Capitulo 5 (Conclus3o):
Discute brevemente os resultados e apresenta as consideracdes finais.
e Capitulo 6 (Referéncias Bibliograficas):

e Capitulo 7 (Apéndice):

Apresenta uma ferramenta para simular os aspectos temporais de sistemas de tempo

real e de redes.

15

2 CONCEITOS E TECNOLOGIAS ENVOLVIDAS

2.1 Indeterminismo Temporal

Um Joop de controle consiste principalmente em entrada de dados, célculo do sinal de
controle, e escrita da saida. No caso ideal, o algoritmo de controle é executado periodicamente
conforme o periodo de amostragem, e o tempo entre a leitura e a escrita de dados deve ser
desprezivel. Na pratica, existem diversas formas de atraso presentes do sistema, conforme

apresentado na figura 2.1.

O periodo de amostragem que assume-se constante é h. Porém, existe um atraso Lg entre
o momento em que o escalonador coloca a task na condicao Ready, e o momento em que ela
de fato é executada. Esse atraso é chamado de laténcia de amostragem, e ocorre devido a
interrupgdo da task em questdo por outras de maior prioridade (ou seja, depende da politica
de escalonamento). O tempo entre a leitura e escrita de dados L;, corresponde a laténcia de

entrada e saida.

A variagdo da amostragem é definida como:

__ rmax min

Define-se variacao do intervalo de amostragem como:

Jh — pmaz _ hmin

Analogamente, a variacdo do tempo entre a entrada e saida é:

__ 7Tmaxr _ 7min
Ji _Lio Lio

16

hk—l hk

Lt I’ L} Lj,
- - - -
I N I
! | T -
k-1 'k Tr+1 t

Figura 2.1: Atrasos indeterministicos no loop de controle.

2.2 Técnicas de Escalonamento de Processos

Sistemas de tempo real possuem deadlines, que sdo limites superiores de tempo aos quais
o processo ndo deve ultrapassar. Nesse tipo de sistema, é essencial que exista uma analise
anterior a implementacdo. O objetivo é que se possa garantir que todas as tarefas sejam

executadas antes do seu deadline.

A estratégia de escalonamento pode se dar na forma estdtica ou dindmica. O primeiro
modelo consiste em uma tabela com uma sequéncia de tarefas a serem executadas ciclicamente.
Esta tabela é baseada em algoritmos de otimizacdo previamente elaborados. Porém, este
modelo n3o suporta a modificacdo da tabela durante a execugdo, dificultando a integracao

com o sistema de controle.

A segunda forma na qual a estratégia de escalonamento pode se apresentar é dinamica,
pois 0 processo a ser executado é definido durante a execu¢do do programa. Os algoritmos
de escalonamentos que serao estudados nesse trabalho foram primeiramente apresentados em
1973 por Liu e Layland [2], e diferem na condigdo suficiente para alterar a prioridade das
tarefas. Serdo analisados o Earliest Deadline First (EDF), e o Rate Monotonic (RM). Nesse

trabalho, é utilizado o termo Fixed Priority ou FP para se referir a técnica RM.

O EDF significa "prazo-mais-curto-primeiro”e dd maior prioridade ao processo em que seu
deadline estd mais préximo de ser atingido. O FP, prioridade-fixa, considera como tarefa de

maior prioridade aquela que possui o menor periodo de execucao.

Para a melhor andlise do EDF e RM, [2] propde as seguintes hipdteses:

e Todos processos sao periddicos e possuem um periodo 73,

e Todo processo possui um Worst Case Execution Time (WCET), que é o tempo que o pro-
cessador requer para executar determinado processo no pior caso possivel, considerando

que apenas essa tarefa é realizada. O WCET sera representado por C},

e Toda tarefa possui um deadline D; conhecido e igual ao periodo:D; = T,

17

e N3o ha comunicacao entre processos,

e Operacdes internas ao sistema operacional ndo requerem tempo de execucdo.

Em [2], é apontado que, considerando U a carga da CPU, no caso do EDF:

U:ilgl (2.1)

Dessa forma, temos que para uma utilizacdo de 100 % da CPU, ainda se pode cumprir

todos os deadlines.

Para o FP, temos:
U= - <n(2"—1) (2.2)

Nesse caso, se n tende ao infinito e para os deadlines serem cumpridos, temos que U <

0.693.

Nos ultimos anos a analise do EDF e do FP tém sido refeitas considerando hipdteses menos

restritivas.

2.3 Subtask-Scheduling

Uma implementac¢ao trivial de mdltiplos controladores numa mesma plataforma consiste
no uso do algoritmo de escalonamento First Priority e da utilizacao de somente uma task para
cada controlador. A cada periodo de amostragem, a entrada € lida, o algoritmo de controle
é executado, e a saida é escrita. Quando executado em um sistema de tempo real, atrasos
indeterministicos causados pelo escalonamento sdo introduzidos. Desse modo, o desempenho
do controlador, como um todo, é prejudicado pelo aparecimento de grandes atrasos como:

laténcia de amostragem, laténcia de entrada e saida, e variagdes no periodo de amostragem.

Para uma boa performance do controlador, além do fato de que os célculos devem ser
finalizados antes do deadline correspondente, é importante que as operagdes de amostragem

e de atuacdo sejam regulares, e livres de variacdes ou laténcias considerdveis.

Objetivando-se reduzir a laténcia, pode-se dividir o algoritmo de controle em tasks difer-
entes, e escalona-las individualmente definindo-se diferentes prioridades para cada uma delas.
O conceito principal do Subtask Scheduling, apresentado em [3], é dividir o algoritmo de con-
trole em duas tasks, onde a porcdo critica em que se calcula o sinal de controle forma a task

Calculate Output, e o resto das operagles constituem a task Update State. Nota-se que a

18

task que calcula a saida é mais critica do ponto de vista temporal, pois espera-se que ela seja
executada precisamente a cada periodo de amostragem. A task responsdvel pela escrita da
saida deve ser cumprida até o periodo de amostragem. A reducdo da laténcia de entrada e
saida pode ser provada pela analise que considera o pior tempo de execugdo (onde a task que
calcula o sinal de controle é interrompida por todas tasks que possuem prioridade superior a

ela), e consequentemente, a maior laténcia possivel.

O caso ideal de implementacdo do Subtask Scheduling utilizando First Priority ocorre
quando todas as tasks de célculo do sinal de controle possuem prioridades mais altas do que
todas as tasks de escrita da saida. Porém, esse tipo de definicdo de prioridades pode levar ao
caso de impossibilidade de escalonamento. Para esses casos problematicos, existem algoritmos
que minimizam os deadlines (e consequentemente aumentam as prioridades) das tasks de

calculo do sinal de controle a partir de modelos escalondveis.

2.4 Protocolos de Comunicacao

2.4.1 O Protocolo CAN

O Controller Area Network (CAN) foi criado em meados dos anos 80 pela fornecedora de
sistemas automotivos Bosch. O principal objetivo era fazer uma comunicagdo serial robusta e
aumentar assim a confiabilidade, sendo hoje vastamente empregada na automacgao industrial

e sistemas embarcados automotivos [4].

O CAN, juntamente com muitos outros protocolos, utiliza o modelo de camadas padrdo,
Open Systems Interconnection (OSl) da 1SO, o que a principio permite a interoperabilidade
de produtos de diferentes fabricantes. No CAN as 2 ultimas camadas da OSI ja sdo im-
plementadas, deixando as camadas superiores a disposicao ao desenvolvedor para eventuais
adaptacdes ou otimizacoes. Essas camadas sujeitas a implementacao sao em geral usadas para
padronizar os procedimentos de inicializacdo, escolher enderecos para os tipos de mensagens e
0s nos participantes, determinar as estruturas das mensagens , prover rotinas para tratamento

de erros, entre outras aplicagoes.

O CAN ¢é um protocolo do tipo CSMA/CD (Carrier Sense Multiple Access with Collision
Detection). lIsso significa que cada dispositivo deve monitorar o bus de comunica¢do por um
periodo determinado de tempo antes de transmitir alguma informag3o. Apds esse intervalo,
todos os dispositivos tém a mesma oportunidade de envio de mensagem. Ha, porém, uma

prioridade definida para cada né e um sistema de deteccdo de colisdes. Assim quando duas

19

transmissoes se iniciam ao mesmo tempo, somente a mensagem de maior prioridade € enviada,

sem sofrer atraso ou corrompimento.

Nesse protocolo o nivel l6gico dominante é o 0, consequentemente o recessivo é o 1.
Portanto o identificador de mensagem(campo utilizado para a arbitragem de prioridade) que
tiver o menor valor serd o de maior prioridade. Como foi citado, cada dispositivo monitora
o bus para verificar se o bit que esta tentando enviar é o que é de fato encontrado no bus.
Em um caso de colisao, em algum momento o bit da mensagem de menor prioridade sera
"dominada”pelo nivel légico 0, cientificando o dispositivo de que ha colisdo e fazendo esse

ultimo parar de transmitir imediatamente.

A transmissao de mensagens nao sao baseadas em enderecamento, cada mensagem contém
a definicao da propria prioridade além dos dados a serem enviados. Logo todos os nds da rede
recebem as mesmas mensagens, e cabe a elas decidir se as descarta ou se as processa. Uma
vantagem ¢é a facilidade para incluir novos nés no sistema por ndo necessitar reprogramar todos
os outros para reconhecer essa acdo. Os novos dispositivos recebem todas as mensagens
enviadas, bastando somente escolher qual delas processar. Apesar dessas caracteristicas, o
CAN permite também que um né requeira informacdo de um outro especificamente. Isso é

chamado de RTR, Remote Transmit Request.

Utilizam-se 4 tipos de mensagens no CAN: Data Frame, o mais comum deles, usado para
transmitir dados para algum ou todos os nds; o Remote Frame, usado especificamente para
RTR; Error Frame, o qual é gerado para indicar algum dos erros definidos no protocolo; e
Overload Frame, o qual também indica erro, porém especialmente em caso de sobrecarga de

algum nd, quando uma mensagem ¢é recebida antes de terminar o processamento da anterior.

Um Data Frame é formado por Arbitration Field, Control Field, Data Field, CRC Field,
2 bits de Acknowledge Field e o End of Frame. O Arbitration Field é usado para priorizar as
mensagens como ja foi comentado, ou entdo para determinar se a mensagem é um Remote
Frame. E composto por 12 ou 32 bits dependendo do tipo de Data Frame, o qual pode ser

um Standard Frame ou Extended Frame.

O Control Field é composto por 6 bits, sendo que para um Standard Frame o mais signi-
ficativo serd um bit dominante e o segundo é reservado. No caso de um Extended Frame os
2 bitssao reservados. Os 4 (ltimos bits determinam o tamanho dos dados. O Data Field sao

os dados com o tamanho especificado pelos 4 bits citados.

O CRC Field consiste em 16 bits, 15 para o valor do CRC (Cyclic Redundancy Check) e

um bit delimitador. E usado pelos nds receptores para identificar se ocorreu algum tipo de

20

corrompimento no dado. O Acknowledge Field é usado para indicar se a mensagem foi recebida
corretamente, em caso positivo o né receptor coloca o nivel légico dominante no instante do

ACK Slot bit. Finalmente, 7 bits recessivos compdem o End of Frame.

Os nés de uma rede CAN s3o capazes de verificar o nivel de falha existente e mudar
para diferentes modos de funcionamento. Podem, por exemplo, desligarem-se completamente
dependendo da gravidade da falha. Dessa forma, os nés com erro deixam de ocupar a banda

do bus, deixando-o livre para informacoes criticas.

Existem 5 tipos de erros no CAN:

e CRC Error. O valor dos 15 bits de CRC s3o calculados pelo dispositivo transmissor e é
enviado no CRC field. Todos os receptores calculam o CRC e verificam se corresponde
ao recebido. Em caso negativo, é gerado um Error Frame e a mensagem é reenviada

depois de um intervalo de tempo apropriado.

e Acknowledge Error: Na transmissao de um Data Frame, se pelo menos um dispositivo
recebeu a mensagem corretamente o ACK Slot bit serd dominante. Caso o transmissor
verifica que esse Ultimo é recessivo, um Error Frame é gerado e a mensagem é reenviada

apo6s um intervalo de tempo.

e Form Error. S3o diversos os bits reservados para serem recessivos, como no End of
Frame, intervalo entre transmissdes, Acknowledge Delimiter ou CRC Delimiter. Caso
seja encontrado o nivel I6gico dominante em algum desses bits, é gerado um Error Frame

e a mensagem ¢ retransmitida.

e Bit Error: Ocorre se o transmissor envia um bit dominante e detecta um bit recessivo
ou envia um recessivo e detecta um dominante. Nao se considera um Bit Error quando
isso é verificado no Arbitration Field ou Acknowledge Slot, em que isso ja faz parte da
funcionalidade do protocolo. Em caso de erro, gera-se o Error Frame e a mensagem é

reenviada.

e Stuff Error. O CAN usa o método de transmissdo Non-Returnn-to-Zero (NRZ). No
método Return-to-Zero (RZ), o sinal retorna para 0 para cada bit de informag&o, assim
o sinal é self-clocking, isto é, nao exige um clock adicional para fins de sincronizacao. No
CAN n3o ha, portanto, esse retorno para zero, logo a informacao a ser transmitida sempre
estard no bus, e os dispositivos somente sincronizam na transicao de um bit recessivo para
dominante. O CAN automaticamente coloca um bit de nivel légico oposto quando hd

mais de 5 bits consecutivos iguais, e isso € utilizado pelos dispositivos para sincronizagao.

21

Dessa forma, o erro é gerado quando se detecta 6 ou mais bits consecutivos de mesmo

valor, nesse caso um Error Frame é gerado e a mensagem é repetida.

A deteccdo de algum tipo de erro se torna publica na rede através dos Error Frames
ou Error Flags. A mensagem com erro é reenviada assim que o bus estiver desocupado e o
né vencer novamente a arbitragem. Para diferenciar falhas temporarias de permanentes, o
CAN possui dois contadores de erros associados a cada né, o REC (Receive Error Counter)
e o TEC (Transmission Error Counter). Esses contadores sdo incrementados a cada falha e
decrementados para cada sucesso de transmissdo ou recep¢ao. Dependendo do valor desses

contadores, um dispositivo pode estar em 3 estados de falha:

e Error-Active: O nd estard nesse estado caso tenha o valor de TEC e REC abaixo de
128 e pode enviar Active Error Flags, que sdo 6 bits dominantes consecutivos. Isso gera
um Stuff Error em todos os receptores, fazendo-os enviar seus respectivos Error Flags,
chamados de Error Echo Flags, podendo totalizar mais de 12 bits dominantes. O estado
Error-Active indica condi¢des normais, permitindo o dispositivo a transmitir e receber

mensagens sem restricoes.

e Error-Passive: Um né passara para esse estado quando o TEC ou o REC estiver maior
que 127. No lugar do Active Error Flags, poderd somente enviar Passive Error Flags,
6 bits recessivos consecutivos. Caso haja sucesso na transmissao podera gerar os Error
Echo Flags, porém se for interrompido por algum bit dominante, terd de esperar que o

bus fique desocupado por 8 bits antes de retransmitir.

e Bus-Off: Estardo nesse estado os ndés que tiverem somente o TEC maior que 255. Os
dispositivos nessa condicao ndao podem enviar ou receber mensagens ou Error Flags de
qualquer tipo. H4, porém, uma sequéncia de recuperacio definida no protocolo para
que os nos nesse estado possam retornar a condicao de Error-Active, podendo reiniciar

as transmissdes caso a falha tenha sido removida.

O CAN ¢, pois, um protocolo voltado para a transmissao de dados relativamente pequenos
com alta confiabilidade. Pelo fato de ndo ser baseado em enderecamento, ndo ha necessidade
de modificar a mensagem para transmissGes de né para né ou multicast. O sistema de confi-
namento de falha ndo permite que um (nico dispositivo com falha possa colocar a rede abaixo,
garantindo banda para que mensagens criticas sejam enviadas. Todas essas vantagens sao o
motivo da expansdo de seu uso para além dos veiculos automotivos, sendo sempre visto como

uma alternativa no desenvolvimento de sistemas embarcados.

22

2.4.2 O Protocolo SPI

Considerando o aumento da complexidade das aplicacdes da microeletronica, é muito
comum hoje que se conectem diversos dispositivos, nos quais se incluem diferentes microcon-
troladores, para que se possa obter uma determinada funcionalidade. O SPI é um protocolo
que surgiu com o intuito de facilitar essa comunicacdo entre mdltiplos processadores. Uma de
suas principais vantagens é que pode ser implementado inteiramente por software, permitindo

assim comunicar um processador que possui o hardware do SPl com um que n3o possui.

Todo sistema composto por esse protocolo possui um mestre e um ou mais escravos. O
mestre é o dispositivo que providencia o clock que sincroniza a comunica¢ao, portanto os

escravos sao os que recebem esse sinal.

Basicamente 4 sinais s3o necessarios para compor uma comunica¢do SPI: MOSI (Master-
Out / Slave-In), MISO (Master-In | Slave-out), SCK (Serial Clock), e SS (Slave-Select) .

O pino MOSI é designado como um pino de saida para o mestre e entrada para o escravo. O
mestre utiliza esse pino para enviar mensagens ao escravo, sendo que os bits mais significativos

sao enviados primeiro.

O pino MISO é um definido como entrada no mestre e como saida no escravo, logo o

escravo o utiliza para enviar mensagens ao mestre.

Toda comunicacao € sincronizada por um clock, e um bit é enviado a cada pulso de clock.

Cada mensagem é composta por um byte, logo requere 8 pulsos de clock para ser enviada.

O SS é utilizado pelo mestre para escolher com qual dos escravos se comunicard, logo
diversos pinos podem ser utilizados para essa funcio, sendo que sio definidos como saida no
mestre e entrada no escravo. Esse sinal é ativo em 0, assim deve ser colocado nesse valor

antes do inicio dos pulsos de clock.

Um dos elementos principais do funcionamento do SPI é o SPI Data Register, um reg-
istrador de 8 bits. O mestre e cada escravo possuem seus proprios registradores, os quais estdo
ligados pelo MOSI e MISO. Considerando um mestre e um escravo, forma-se um registrador
de 16 bits continuos. Quando uma mensagem é enviada, esse registrador é deslocado de 8

bits, trocando o conteldo dos 2 registradores de 8 bits.

O SPI permite selecionar a polaridade e a fase do serial clock a partir de 2 pardmetros, o
CPOL (Clock Polarity) e CPHA (Clock Phase), havendo 4 possiveis configuragdes.

Quando o CPHA é 0, a amostragem do dado é feita na primeira borda de clock depois

23

cLOCK
DATA OUT
SPl | DATAIN

Yy

SLAVET

MMASTER

Y

SLAVE SELECT 1
o | SUNESELECT2 pa—
| SLAVE SELECT 3 ‘ R

SLAVE 3

Figura 2.2: Protocolo SPI (Serial Peripheral Interface).

que o SS é colocado em 0. Na segunda borda, ocorre o deslocamento de um bit nos shift

registers, e esse processo se repete nas 16 bordas que compdem a transmissao.

Alguns hardwares requerem que primeira borda de SCK ocorra a antes que o dado esteja
disponivel no pino de saida. Nesse caso o CPHA deve ser 1, e a amostragem ocorre na segunda

borda de clock.

Quando CPOL = 0, o nivel légico 0 é produzido em regime pelo pino SCK quando n3o

houver transmissdo. Analogamente, para CPOL = 1 o nivel légico de regime serd 1.

O SS pode permanecer ativo em transmissdes sucessivas no caso de CPHA = 1. Porém,
no caso de CPHA =0, o sinal SS é utilizado para disponibilizar o primeiro bit mais significativo

na porta.

2.5 O Microcontrolador TINI

O microcontrolador TINI Maxim DS80C400 da Dallas Semiconductor é um dispositivo
8051 que oferece como periféricos um 10/100 Ethernet MAC, 3 portas seriais, um controlador
CAN 2.0B, 1-Wire Master e 64 pinos de Entrada/Saida. Apresenta uma pilha TCP Ipv4/6 com
capacidade para até 32 conexdes simultdneas com taxa maxima de transferéncia de 5Mb/s.
Seu clock méximo é de 75MHz, o que resulta em um tempo minimo de ciclo de instrucdo de
54ns.

Suas principais aplicagoes sao:

e Controle e Automacao Industrial

24

@ Edoiclorcholcharetatotel

Figura 2.4: Placa de desenvolvimento MCB2300 com Microprocessador ARM 7

e Monitoramento de Ambiente

e Sensores de rede

e Automacao residencial ou de escritério

Os aplicativos podem ser programados em 3 linguagens: C, Assembly (8051) ou Java

(JDK 1.2.2 a 1.4). Os programas serdo desenvolvidos em um PC e carregados no dispositivo

por conexao serial, utilizando o software JavaKit fornecido.

25

2.6 O Sistema Baseado no Microcontrolador ARM7

O ARMY é um microcontrolador com arquitetura RISC de 32 bits e vem se constituindo
como um dos microcontroladores mais utilizados. Vdrios fabricantes produzem o mesmo

microcontrolador mas com diferentes configuragdes internas de Entrada/Saida [5].

O ARMY é bastante utilizado na inddstria automobilistica em aplicacdes com barramento
CAN, e se caracteriza por ter alta conectividade, usualmente contendo protocolos UART, 12C,
CAN e Ethernet além de entradas A/D, saidas D/A e Entrada/Saidas digitais (configuragdes

sdo bastante varidveis de acordo com marca e modelo).

A placa de desenvolvimento escolhida é a MCB2300 da Keil, Inc (Figura 2.4). A Placa
contém um microcontrolador ARM 7 2378 NXP com clock de 12MHz. O sistema contem 2
portas CAN e uma Porta Ethernet.

2.7 O Sistema Operacional de Tempo Real RTX

O software de sistemas embarcados geralmente é desenvolvido com a utilizagdo de inter-
rupcoes e de um looping rodando na funcdo main do cédigo fonte do programa. Configuram-se
timers, e criam-se interrupcOes para tratar o problema de sensoriamento, atuacao, e comu-
nicacdo com outros dispositivos. Embora muitos programas ainda s3o implementados dessa
forma, para usufruir do avanco das técnicas de projeto e estruturacdo de software, utilizaremos

nesse trabalho um sistema operacional de tempo real no microcontrolador ARM.

O sistema operacional utilizado é o RTX. Com ele, blocos funcionais do projeto podem
ser desenvolvidos como processos que sdo escalonados pelo RTX. Cada processo pode ser
desenvolvido e testado isoladamente em relacdo a outros processos, tornando o trabalho de
implementacao mais facil. As vantagens de se usar um sistema operacional de tempo real no

microprocessador s3o uma abordagem orientada a objeto e o suporte a operagdes multitarefa.

O RTX consiste em um escalonador que suporta os modos Round-Robin, preemptivo, e
cooperativo para as tarefas. Além disso, o sistema operacional permite o gerenciamento de
tempo e memdria, e comunicagao entre diferentes tarefas com auxilio de triggering, seméforos,

Mutex, e um sistema de caixa de mensagens.

26

2.7.1 Tasks (Tarefas)

A elaboracao de um programa em linguagem C tipica é feita por meio de métodos que sao
chamados para realizar determinada operacdo, e que retornam para a funcao que os chamou.

No sistema operacional de tempo real, a unidade basica de execucdo é a "Tarefa”, ou task.

Uma task se parece bastante com um método, porém é necessério que ela tenha um looping
sem condicdo de parada. Dessa forma, cada task funciona como um pequeno programa que é
executado no sistema operacional. Dentro do mesmo, hd um laco que é repetido durante um

tempo intederminado.

__task void task(void) {

for (5;) 1
// Cédigo
}
}

Um programa baseado no sistema operacional de tempo real possui entdo varias tasks,
que sao controladas pelo escalonador do sistema. Num dado microprocessador, apenas uma
task pode estar sendo executada em um instante. Dessa forma, um processo sempre estd em
um dos quatro estados bdsicos: Running, Ready, Waiting, ou Inactive. O RTX possui alguns

métodos para comunicacdo entre as tasks, sendo eles: eventos, samaforos, Mutex, e Mailbox.

2.7.2 Eventos

Cada task é criada com dezesseis flags de evento. Estas flags estdo armazenadas no
Bloco de Controle de tasks. E possivel interromper momentaneamente a execu¢ao de uma
task colocando-a no modo Waiting até que um particular grupo de flags atinja uma condicdo
necessaria. Quando isto ocorre, a task volta a condicdo Ready, e é escalonada pelo RTX.

E possivel definir um periodo para que a task que estd no modo Waiting retorne a condicao
Ready.

2.7.3 Semaforos

O uso de seméforos permite sincronizar atividades entre duas ou mais tasks. Em termos
gerais, um semaforo contém um nimero de tokens. Quando uma task é executada, ela faz

um pedido ao Sistema Operacional para adquirir um token. Se o Sistema possui um ou mais

27

tokens disponiveis, a task serd executada e o niumero de tokens sera decrementado em uma
unidade. Se a task realiza o pedido ao Sistema, mas ndo ha tokens disponiveis, ela entra na
condicao Waiting até que um token esteja disponivel. Uma tarefa pode também devolver um

token para o Sistema.

Desse modo, semaforos sdo usados para controlar o acesso aos recursos do Sistema Op-
eracional. Antes que um processo tenha acesso aos recursos, ele precisa adquirir um token.
Se nenhum esta disponivel, ele espera. Quando terminou de utilizar os recursos, ele devolve o

token.

Para exemplificar uma aplicacdo do uso de semaforos, pode-se considerar a sincronizacdo
de duas tasks. Para isso, inicializaremos o Semaforo com um token, e executaremos as duas
tasks. Em certo ponto do programa, uma task pedird o token, e continuard sua execucao.
A segunda task também tentara obter o token, porém, este ja estard ocupado. Entretanto,
a primeira task devolverd o token para o Sistema, e quando isto ocorrer, a segunda task ira
deixar o estado Waiting e entrard na condicao Ready. Uma vez em Ready, o escalonador se

encarregara de rodar o processo.

Outras aplicacbes de Semaforos sdo: assegurar que determinada task execute antes de
outra; realizar o papel de multiplexador limitando o niimero de tasks que acessam recursos do
sistema; realizar o "encontro’de tasks, ou seja, duas ou mais tarefas irdo alcangar certo ponto

do programa, e irdo esperar até que as outras também cheguem neste ponto.

2.7.4 Mutex

Mutex vem de Mutual Exclusion, ou seja, exclusdo mutua. Esta ferramenta é uma versao
mais especializada dos Seméaforos, pois possui o0 mesmo principio de funcionamento, exceto
por ser inicializado com apenas um token. Sua principal aplicaciao é controlar o acesso a um

recurso como um periférico. Dessa forma, o token de um Mutex é bindrio e limitado.

2.7.5 Mailbox

Os métodos de comunicagdo entre tasks apresentados até agora, visam apenas a sin-
cronizagao entre diferentes partes de cédigos do programa. Porém, existem situagcGes onde é
necessdria a transferéncia de dados entre as tasks. Esta tarefa pode ser realizada por meio de
escrita e leitura em varidveis globais. Entretanto, tal implementacdo abre precedentes para er-
ros imprevisiveis que n3o garantem a integridade da informagdo. Por este motivo, é necessaria

a formalizacdo na comunicacdo assincrona entre tasks.

28

O Sistema Operacional de Tempo Real possui uma caixa de mensagens que possibilita a
transferéncia dos tipos de dados byte, inteiro e dados com largura de palavras, com compri-
mento fixo ou varidvel. Um Mailbox consiste em um bloco de meméria formatado como buffers
de mensagem, e um conjunto de ponteiros para cada buffer. Dessa forma, quando se envia
uma mensagem para o Mailbox, o slot correspondente a mensagem fica travado, podendo ser

liberado apds a leitura dos dados enviados.

A configuracdao de um Mailbox é feito da seguinte forma: Declara-se o ponteiro de men-
sagem como um array de unsigned integers, onde se define o niimero de slots. Em seguida,
declara-se a estrutura que acomodara os dados a serem transferidos, geralmente utilizando
struct. Apds definir o formato do slot de mensagem, deve-se reservar um bloco de memdria
suficientemente largo para acomodar dezesseis slots de mensagem. Esses blocos de meméria

sao formatados com funcdes disponiveis no Sistema Operacional.

Para realizar a transferéncia de mensagem entre duas tasks, cria-se um ponteiro do tipo
da estrutura da mensagem na task que envia a informacdo, e aloca-se o ponteiro no slot de
mensagem. Desse modo, preenche-se o slot de mensagem com os dados a serem transferidos
com auxilio do ponteiro. Com este procedimento, o Sistema trava o slot de mensagem. Para
receber o dado, cria-se um ponteiro do tipo da estrutura mensagem na task que recebe a

informacdo, e aloca-se o dado que estd no slot para o ponteiro. Finalmente, o slot é liberado.

2.7.6 Travamento e Destravamento de Tasks

Num software de controle, é necessario assegurar que um trecho de cédigo é executado
sem sofrer interrupcbes causadas pelo escalonador. Em uma aplicacdo baseada no Sistema
Operacional RTX, n3o se pode garantir que um determinado trecho de cddigo sera executado
ininterruptamente. Dessa forma, devem-se usar as funcoes de travamento e destravamento
disponiveis no sistema, que permitem ou proibem o escalonador de interferir na execucao de

determinada task.

tsk_lock O);
trecho_de_cédigo_critico ();

tsk_unlock ();

29
2.7.7 Configuracao

A configuracdo do Sistema Operacional de Tempo Real RTX é realizada pela edicdo do
arquivo RTXConfig.c especifico para o microcontrolador LPC2378. Este arquivo vem previa-
mente configurado pelo fabricante, e apresenta todas as opgdes necessarias para o usudrio na

forma de um menu de selecao.

2.7.8 Opcoes de Escalonamento no RTX

O Sistema Operacional de Tempo Real RTX suporta escalonamento Preemptivo, Round-
Robin, e cooperativo. Entretanto, para a maioria das aplica¢cOes, utiliza-se um modelo misto

chamado escalonamento Round-Robin preemptivo.

2.7.8.1 Escalonamento Preemptivo

O escalonamento preemptivo é configurado desabilitando-se a op¢do Round-Robin, e
definindo-se uma prioridade diferente para cada task. Dessa forma, um processo sera ex-
ecutado até que seja interrompido por outro de maior prioridade, ou pelo préprio Sistema
Operacional. Dessa forma, existe uma hierarquia na execucdo dos processos, com cada tarefa

consumindo tempos de execucdo variaveis.

2.7.8.2 Escalonamento Round-Robin

O escalonamento baseado em Round-Robin é configurado habilitando-se a opgdo Round-
Robin no arquivo RTXConfig.c, e definindo-se a mesma prioridade para cada task. Neste tipo
de escalonamento, cada task serd executada durante o mesmo periodo de tempo fixo, ou até

que seja interrompida pelo Sistema Operacional.

2.7.8.3 Escalonamento Cooperativo

O escalonamento cooperativo é configurado desabilitando-se a op¢do Round-Robin, e
definindo-se a mesma prioridade para todas as tasks. Dessa forma, cada task executard até que
seja interrompida pelo préprio sistema operacional, ou utilize uma fun¢do para explicitamente

passar para outra task.

30

3 METODOLOGIA

3.1 Concepcao da Plataforma de Testes

A concepcdo da plataforma de testes é ilustrada na Figura 3.1. Observa-se a presenca de
plataformas mecanicas a serem controladas, drivers de acionamento, microprocessadores TINI
atuando como bridge de rede, microcontroladores ARM7 que executam o sistema operacional

de tempo real RTX e implementam os controladores, e rede de comunicacdo CAN.

As plataformas mecanicas sdo constituidas de dois motores de corrente continua (DC)
juntamente com seus drivers de poténcia. Um deles é o motor que se deseja controlar em

malha fechada, e o segundo motor DC é utilizado como um gerador de disttrbios de torque.

O motor principal estd acoplado a sensores de torque (embutido no driver) e posicdo
(encoder). O driver de acionamento possui saidas que permitem o acesso da velocidade de
rotacdo do encoder acoplado aos motores. Os sinais dos sensores se conectam a um micro-
controlador TINI DS80C400 (Maxim-Dallas Semiconductor). O objetivo da utilizagdo desse
microcontrolador é o transporte das informacdes dos sensores para uma rede de comunicacao
CAN. Da mesma forma, mensagens CAN do sinal de atuagdo sdo convertidos pelo TINI para

o protocolo SPI de forma a levar as informagdes ao driver.

As tarefas que implementam os controladores sdo executadas no microcontrolador ARM7

que possui o sistema operacional de tempo real RTX nele configurado.

Para os experimentos de sistemas de controle distribuido, os mddulos poderao ser in-
terconectados em rede. Dessa forma, podemos conectar varias plataformas de teste numa
rede de comunicacdo e distribuir os processos adequadamente em uma CPU ou vérias CPUs

simultaneamente.

31

|

(CANBUS ;

PWM I I PWM I

5 5

Figura 3.1: Concepcdo da plataforma de testes

3.1.1 A Plataforma Mecanica

Quatro unidades da plataforma mecanica foram inteiramente projetadas e construidas. A
figura 3.7 mostra uma plataforma mecanica em estdgio final de constru¢ao. As figuras 3.2
e 3.3 apresentam os modelos em software CAD do kit. Foram utilizados materiais de baixo
custo como acrilico para a base e aluminio para as pecas. A tabela da figura 3.9 apresenta os

custos relacionados a aquisicao de materiais para a construcdo do kit.

Os motores utilizados sdo provenientes de scanners fabricados pela Canon, modelo FN38,

e seus graficos de torque em funcdo da velocidade sao apresentados na figura 3.10.

Os mancais utilizados no projeto sdo fabricados pela Igus, e sdo do modelo KSTM-10
(figura 3.4).
A polias sao fabricadas em aluminio pela Schneider, e proporcionam uma relagdo de:

DprimitivoMaior . 28.65

DprimitivoMenor N 16.23

conforme (figura 3.5).

O encoder série 40 é fabricado pela Hohner e possui uma resolucdo de 1024 pulsos por

32

Figura 3.2: Modelo em trés dimensdes do kit mecanico.

revolucdo. Sua construgdo é feita em aluminio e possui eixo com didmetro de 6mm (figura
3.6).

3.1.2 A Plataforma Elétrica

A plataforma elétrica (figura 3.11) foi adquirida pelo Laboratério de Sistemas Embarcados
do PMR (Departamento de Engenharia Mecatrdnica), e consiste na fonte de alimentagio,

drivers de acionamento, microcontroladores TINI e ARM?7.

O driver de acionamento (figura 3.12) foi adquirido separadamente, é do modelo PN420,
e pode ser utilizado em dois modos de operagdo: Analdgico e Digital. O modo de operagdo
é selecionado pelo jumper JP1, onde a presenca do jumper configura o modo analdgico, e a
sua auséncia aciona o modo digital. Hd um /ed vermelho que pisca com uma frequéncia maior

quando o driver esta configurado para operar no modo analdgico.

Figura 3.3: Modelo renderizado em trés dimensdes do kit mecénico.

O
v

7

J
[
|

T ?
r %FL”‘\&%

-t —

o/ 5 9} ﬂ{H)}-HL-—- I @ﬁ

—_
:
—
T

N\
7\

h1

o |3
|

AN

T
x2
Dimensions [mm]
igubal® - Pillow Block Bearing KSTM
Part Number a di B C1 hi h2 m h3 d3 X2 Max.
E10 Pivot
KSTM-10 62 10 14 10,5 14 26 46 7.5 52 8 25°

Figura 3.4: Mancal KSTM-10 fabricado pela Igus.

34

~12=—
L

f 1——[_ |

1 é; ~ naam

i Q

Sg (— T

6HF 6F

Referéncia | Numero Tipo Dia. Dia. Dia. Furo Furo Peso
da de de Primitivo | Flanges | do Cubo L1 L2 Min. Max. Aprox.
Polia Dentes Polia @ Dp JgF gcC (%] %] (Kg)
173M9 17 6HF 16,23 17.0 17,0 1.7 17,5 3.0 5.0 0,010
303M 9 30 6F 28.65 32,0 20,0 132 19,2 6.0 11,0 0,028

Figura 3.5: Polias modelos 173M9 e 303M9 fabricados pela Schneider.

3
| |«—
| | | | A
¥
g s = 40 g
vy 4
11 \ Y
«> a5 Rosca M3x8
«E) « » (4x) 90°

Figura 3.6: Encoder série 40, fabricado pela Hohner.

35

Figura 3.7: Plataforma de testes.

36

Figura 3.8: Conjunto de quatro plataformas de testes.

Mancais 16,00
Polias 73,50
Correia 20,00
Acrilico 25,00
Conedores 31,90
Aluminio 20,00
Qutros 23,60

TOTAL 280,00

Figura 3.9: Tabela de custos relacionados a matéria prima.

37

16 L -
—-1 [}E—_
r‘-‘
o la 1.5 16 | . ~
=
A
|| L
ﬂ 0
— M
J—1®
i [
/ - !
/ 4-M3 PCD25.4
Speed N (r/min) Currentl (mA)
[R EINRESNE]]
7500 . : : 10000
6000 —2ay 8000
4500 I ; ; G000
3000 4000
1500 2000
0 - S ’ 0
] 50 100 150 200
Torque mM-m
FN38 S 12V

Figura 3.10: Desenhos e curva do motor Canon FN38 utilizado no projeto.

38

Figura 3.11: Plataforma Elétrica com fonte, drivers de acionamento, e microprocessadores
TINI.

3.1.2.1 Driver de Acionamento: Modo Analégico

O modo analdgico permite que o usuario entre com uma tensio correspondente ao sinal
PWM e a direcdo de rotacdo no par de pinos CN6. O sinal deve estar dentro dos limites de

tensao -2,5v e 42,5, sendo que o sinal determina a direcao de rotacao.

A velocidade de rotacdo do encoder, em RPM, é acessada diretamente no par de pinos
CN5. Semelhantemente ao pino CN6, a tensdo proporcional a rotacdo do eixo do encoder

pode variar entre -2,5v e +2,5v.

3.1.2.2 Driver de Acionamento: Modo Digital

O modo digital se comunica com o meio externo por meio do protocolo SPI. Nesse caso,
utiliza-se o par de pinos CN2 e CN8 pra entrada dos sinais de clock, slave select, master
in slave out, e master out slave in. O funcionamento do protocolo SPI é apresentado num

capitulo dedicado.

3.2 Modelagem e ldentificacao da Planta da Plataforma

3.2.1 Modelagem do Sistema

A plataforma a ser modelada consiste em um amplificador de tensdo, um motor C.C., um
sistema de engrenagens, uma carga inercial, e um encoder 6ptico. A modelagem permite que
uma fungdo de transferéncia entre a tensdo de entrada e,() e a velocidade angular wgyc ()

no eixo do encoder seja estabelecida.

As funcgoes de transferéncia do amplificador e do encoder sao:

39

Figura 3.12: Driver modelo PN420 projetado pela Peres e Noris Automacgao Ltda.

Gamp(s) = Ky (3.1)

GENC(5> = KENC’ (32)

Sabemos que o motor utilizado serd controlado por armadura, e possui corrente de campo

constante. O torque do motor 1" é proporcional a corrente de armadura 7,.Dessa forma:

T - K2 : ’ia (33)

Sabe-se que a tensdo induzida ¢, é diretamente proporcional a velocidade angular %:

do
eb:Kg-a:ngu (34)

Onde K, é a constante de torque do motor, K3 é a constante de forca contra-eletromotriz

do motor, ¢, é a tensdo induzida, e ¢ é o deslocamento angular do eixo de saida do motor.

A velocidade de rotacdo w do motor é proporcional a tensdo de armadura ¢,. A equacio

diferencial do circuito de armadura é dada por:

di, .
La-d—Zt+Ra-za+eb:ea (3.5)

onde L, ¢ a indutdncia da armadura e R, é a resisténcia da armadura.

40

A equacao de equilibrio de torque no eixo do motor é dada por:

d?6 do
C— =T =K1 .
Jo dt2 +b0 dt 2" g (3 6)
ou, em termos de w:
d
J0'£+bo-w:T:K2-ia (3.7)

onde Jy e by sdo a inércia e o atrito viscoso do eixo do motor, das massas inerciais, e das

engrenagens.

Finalmente, com o auxilio das equacdes 3.1, 3.2, 3.4, 3.5, e 3.7, determina-se a funcio de
transferéncia entre a saida correspondente a velocidade angular do eixo do encoder wgne , €

a entrada do gerador de fungdes eg:

Ky - Ky - Kgne

Guls) = (Lo -5+ Ra) - (Jo -5+ bo) + Ks - K3

(3.8)

Pode-se desprezar a indutancia da armadura L,, de forma a representar a equagdo 3.8

como uma funcdo de transferéncia de primeira ordem:

Ky - Ky - Kgne
Ra'(Jo'S+bo)+K2'K3

Gu(s) =

Uma fungao desse tipo pode ser apresentada como:

K.,

Gw(S)ZT-s—i—l

(3.10)

Desse modo, podemos modificar a equacdo 3.9 para a forma da equacdo 3.10, onde:

Ky Kpwe
Ry -bg+ Ky - Ky

K., (3.11)

_— R, - Jo
R, b+ Ky - K

(3.12)

41

CRCNCRCACHT

MNATIONAL INSTRUMENTS

MATLAB »0=k-a-e

Figura 3.13: Esquema para identificagdo do sistema.

Figura 3.14: Placa de aquisicdo de dados PCI-6024E da National Instruments

3.2.2 Identificacao do Sistema

O projeto do controlador a ser utilizado necessita primeiramente de um modelo da planta
das plataformas construidas. Neste capitulo, serd abordado o método de identificacao utilizado.
Um sistema de aquisicao de dados é constituido de computador pessoal, placa de aquisicao de
sinais, condicionador de sinais, sensores e atuadores, e software de aquisicdo e tratamento de

sinais.

O computador pessoal utilizado possui um AMD Athlon XP 1700+ 1.47Ghz e sistema
operacional Windows XP. Dessa forma, é possivel cumprir a funcdo de aquisicao dos dados

em uma taxa de 250 escaneamentos por segundo.

A placa de aquisicdo de dados disponivel no laboratério é a PCI-6024E (figura 3.14),
fabricada pela National Instruments, e possui dezesseis canais de entradas analdgicas, dois
canais de saidas analdgicas, oito pinos de entrada e saida digital, e conector externo de 68

pinos (figura 3.15).

Para a aquisicdo dos sinais foi utilizado o software LabView (Laboratory Virtual Instru-

ment Engineering Workbench) com um Instrumento Virtual (V1) disponivel no Laboratério de

42

Figura 3.15: Conector externo de 68 pinos da placa de aquisi¢do.

Sistemas Embarcados. O tratamento dos dados adquiridos foi feito com o software MATLAB.

A montagem feita é esquematizada na figura 3.13, e consiste em ligar um gerador de
fungbes com uma tensao fixa correspondente ao sinal de controle na entrada analdgica do
driver de acionamento. A saida do driver é uma tensao proporcional a velocidade de rotacao
no encoder, em RPM. Um canal da placa de aquisicdo é afixado na entrada do driver junto

ao gerador de fungdes, e outro canal é afixado na saida do driver.

O gerador de fun¢des é configurado para gerar uma onda quadrada entre os niveis de tensao
0 e 2.5v com um periodo suficientemente grande para o sistema entrar em regime estacionario.
Os dados obtidos pelo software Labview compreendem desde o instante de tempo em que o

degrau de entrada é aplicado até uma regido em que o sinal ja entrou em regime estacionario.

O modelo do sistema obtido na secdo anterior é de primeira ordem. Dessa forma, utiliza-
se o software MATLAB para tracar uma curva exponencial que aproxime os dados obtido e

permita a identificacdo dos parametros K, e T' da funcdo de transferéncia 3.10.

3.3 Redes de comunicacao

3.3.1 Configuracao da rede CAN

3.3.1.1 O Protocolo CAN aplicado no TINI

Para configurar a rede CAN no TINI, foi utilizada uma biblioteca disponibilizada pela
prépria fabricante. Programou-se usando a versio em linguagem C, especificamente para o
ambiente de desenvolvimento pVision. A implementacado é feita por interrup¢ao, permitindo

que o CPU processe outras tarefas enquanto se comunica por esse protocolo.

43

O cédigo abaixo se refere a funcao de inicializacdo da rede CAN. Nela é feita a escolha da
taxa de transmissao de mensagem, no caso 50Kbps. Posteriormente, determina-se o tipo de
mensagem como sendo standard no lugar de extended, pelo fato de que nao ha necessidade
de envio de uma grande quantidade de dados por mensagem. Configura-se também o filtro

de IDs para a recepcdo de frames de um determinado dispositivo.

int startupCAN()
{

//escolha do baud-rate
can_settsegl (CAN_CONTROLLER,CAN_TSEG1)) != 0)

if ((retval

return retval;

if ((retval = can_settseg2(CAN_CONTROLLER,CAN_TSEG2)) !'= 0)

return retval;

if ((retval = can_setbaudrateprescaler (CAN_CONTROLLER,CAN_PRESCALER))

I= 0) return retval;

if ((retval = can_setsynchronizationjumpwidth(CAN_CONTROLLER,CAN_SJW))
I= 0) return retval;

if ((retval = can_setrxwriteoverenable (CAN_CONTROLLER,1)) != 0)
return retval; //permite overwriting quando o buffer de mensagens esta

cheio

junk32 = 0x00;
if ((retval = can_setllbitglobalidmask(CAN_CONTROLLER,&junk32)) !'= 0)

return retval;

config.ExtendedID = FALSE; //utilizagdo de standard frame
config.ID = CAN_RECEIVE_ID; //determinag&do de ID para recepgdo de

mensagem
config.MemeEnable = TRUE;
config.MdmeEnable = FALSE;

//inicio de comunicag3o

44

if ((retval = can_enablecontroller (CAN_CONTROLLER)) != 0)

return retval;

return O;

Para o envio de mensagens é utilizada a funcdo can_sendframe, cujas entradas sdo o
numero do controlador CAN e um structure do tipo CanFrame, o qual representa a mensagem
a ser transmitida. Esse, como pode ser observado no cédigo abaixo, possui parametros como

o ID e o vetor de bytes para os dados.

typedef struct
{
boolean RemoteFrameRequest;
boolean ExtendedID;
uint32_t ID;
uint8_t Length; //tamanho dos dados
char Datal[8]; //dados

} CanFrame;

O valor numérico do sinal de atuagdo e de feedback é alocado em uma variavel do tipo
float, de 32 bits. No entanto, esse ultimo deve ser convertido em um vetor de 4 bytes para
ser associado ao vetor de dados no CanfFrame. Como solucdo foi utilizado uma estrutura do

tipo union, em que aloca-se 2 varidveis em mesmas posi¢coes de memdria.

Considerando o cédigo a seguir, uma vez que uma das varidveis é alocada, automatica-
mente a outra também serd, podendo ser acessada para uso. Dessa forma converte-se o float

em um vetor de bytes para envio e o contrdrio para recepcao de mensagens.

typedef union{

float f;

unsigned char c[4];

}CanframeData;

45

3.3.1.2 O Protocolo CAN aplicado no ARM7

O sistema operacional de tempo real RTX possui um driver CAN que permite uma im-
plementacdo de uma rede de forma rapida e facil, e com uma enorme compatibilidade com
outros dispositivos CAN. O sistema RTX possui bibliotecas com diversas funcdes que auxiliam

o programador.

Para a configuracdo do controlador CAN, foi escrita a seguinte fung3o:
void startup_CANQ){

//Seta o baudrate para o controlador CAN nimero 1 em 50k

CAN_init (1, 50000);

// CAN_rx_object ativa o recebimento de mensagens com determinado ID.
CAN_rx_object (1, 2, ID1_IN, DATA_TYPE | STANDARD_TYPE);
CAN_rx_object (1, 2, ID2_IN, DATA_TYPE | STANDARD_TYPE);
CAN_rx_object (1, 2, ID3_IN, DATA_TYPE | STANDARD_TYPE);
CAN_rx_object (1, 2, 1ID4_IN, DATA_TYPE | STANDARD_TYPE);
CAN_rx_object (1, 2, ID5_IN, DATA_TYPE | STANDARD_TYPE);
CAN_rx_object (1, 2, ID6_IN, DATA_TYPE | STANDARD_TYPE);

//Inicia o controlador CAN especificado, e o introduz na rede CAN
CAN_start (1);
b

A tarefa de receber mensagens CAN merece uma atenc3do especial, pois foi desenvolvida
em uma task independente das correspondentes aos controladores. Dessa forma, utiliza-se

semaforos para acessar as varidveis globais que acodomodam o contetido das mensagens rece-
bidas.

De forma semelhante ao caso apresentado na secdo anterior, foi utilizada a estrutura Union

para permutar entre um dado float (32 bits), e um vetor de 4 bytes (4 x 8 bits).

A funcdo escrita para recebimento de mensagens CAN é na forma:

if (CAN_receive (1, &msg_rece, 0x0000) == CAN_OK){

in_id = msg_rece.id;

46

if (in_id == ID1_IN){

if(OS_R_TMO !'= os_mut_wait (mutex1,0)){
inl.c[0] = msg_rece.datal[3];

inl.c[1] = msg_rece.datal[2];

inl.c[2] = msg_rece.datall];

inl.c[3] = msg_rece.datal[0];
os_mut_release(mutexl);

}

situationl = 1;

}

//if (in_id ==){

// De forma semelhante para outros ID’s
//}

}

O envio de mensagens para a rede é feita pelo seguinte trecho de cédigo:

C...)

msg_sendl.data[0] = U.c[3];
msg_sendl.datal[1] = U.c[2];
msg_sendl.datal[2] = U.c[1];
msg_sendl.datal[3] = U.c[0];

CAN_send (1, &msg_sendl, 0x0000);

3.3.1.3 Conexoes Elétricas

O cabo de conexao CAN é um par trancado com resistores terminadores de 120€). No
bus CAN, o nivel légico zero é representado pela maxima diferenca de voltagem chamada de
"dominante”, e o nivel légico zero é representado pelo idle state chamado de "recessivo”. A

figura 3.16 ilustra a ponta do bus CAN com o resistor terminador.

3.3.2 Comunicacao SPI

Tanto a biblioteca em Java como a em C para o SPI sdo importagdes de uma implemen-

tacao nativa em assembly. Existe uma funcao para inicializacdo e outra para o envio e leitura

47

Figura 3.16: Ponta do cabo CAN com resistor terminador).

simltanea, cuja declaracdo pode ser vista a seguir. A vantagem é que, por ser implementada
em baixo nivel, atinge-se uma excelente precisdo nas constantes de tempo de envio. Perde-se,
porém, versatilidade com relacdo as diversas constantes de tempo que o protocolo poderia

assumir.

void spi_xmit (

unsigned char * dataptr,
int length,

unsigned char delay,
unsigned char options

)

Por problemas que serdo citadas depois, como alternativa a biblioteca original, foi feito
uma implementacdo do SPI em linguagem C utilizando interrupgdo. As constantes de tempo
estavam imprecisas devido a problemas na periodicidade das interrupcdes, assim posterior-
mente foi feito uma customizacdo da biblioteca nativa a partir da edicdo do programa em

assembly.

3.4 Controle do Sistema

Nesse trabalho sdo avaliados trés algoritmos de controle, sendo eles:

1. Controlador Pl
2. Controlador Pl com Compensacdo

3. Controlador PI dividido em Subtasks

48

Controlador Planta

Figura 3.17: Looping de controle utilizado.

3.4.1 Controlador PI

Considerando-se a funcdo de transferéncia de primeira ordem obtida na secdo sobre mod-
elagem e identificacdo de sistemas, utilizaremos controladores do tipo proporcional-integral
(PI) para o controle das plantas, pois se pode demonstrar que controladores desse tipo sdo

suficientes para controlar sistemas onde a dindmica predominante é de primeira ordem [6].

K.

G.=K,+—
s

O controlador é projetado no dominio do tempo continuo e é calibrado com o auxilio do
software MATLAB. Apds isso, é discretizado utilizando-se o método de aproximacao de Tustin,

onde:

2-(z—1)

T2+ 1)

A equacao de diferenca obtida e implementada no microprocessador ARM7 é:

K, T,
2

K;-T,

u(k) =ulk—1)+ (Kp + 5

~Kp)-elk—1) (3.13)

) -e(k) +(

Onde Kp, K;, T,, u(K) e e(K) sdo, respectivamente: o ganho da planta, o ganho da
porcao integral do controlador, o tempo de amostragem, o sinal de controle num instante K,

e o sinal de erro num instante K.

3.4.2 Controlador Pl com Compensacao

A introducdo de indeterminismos temporais, sobretudo a variagdo do periodo de amostragem,
fazem com que o desempenho de um controlador seja bastante reduzido. A figura 3.18 mostra

em linha tracejada o gréfico de Bode para o caso em que um periodo de amostragem é menor

49

10 ; —
o ———Ta*<Tae Lio=0.001
] i R Ta*>Tae Lio= 0001 [
~o ——-Ideal
Ao ~ Ta®= Ta e Lio=0.001 [|
e _
270 N i
a o
2 ;- = -
=2
: ;b _
0 _
Eol _
70 . Ll R L L L ;
10" 10’ 10" 10° 0’

radis

Fase

Figura 3.18: Diagrama de Bode ilustrando efeito de atrasos no periodo de amostragem.

do que o ideal, enquanto que o de linha pontilhada apresenta o0 mesmo grafico para um periodo
maior do que o estabelecido. A linha continua corresponde ao tragado do grafico para o tempo
de amostragem ideal. Os trés tracados anteriores possuem laténcia de entrada e saida con-
stantes e diferente de zero. A linha traco-ponto mostra o caso ideal onde n3o hd variacio
no periodo de amostragem, e nao hd laténcia de entrada e saida. Com base nesse grafico,

percebe-se a introducdo de oscilagdes devido a variagdes no tempo de amostragem.

O controlador com compensac¢ao de atraso implementado foi baseado no controlador Pl ap-
resentado na secdo anterior. A idéia basica é utilizar um dos timers do microprocessador ARM
para efetuar timestamps. Subtraindo-se dois valores de tempo consecutivos no recebimento
de mensagens CAN, utiliza-se esse periodo de amostragem para recalcular os coeficientes A e

B da equacgao de diferengas apresentada na figura 3.19.

50

wk)=ulk—-1)+ (Kp+ =t
\

Figura 3.19: Coeficientes da equacgao de diferencas do controlador compensado.

3.4.3 Controlador Pl dividido em Subtasks

Para a implementagdo do controlador Pl dividido em Subtasks, o algoritmo do controlador
Pl comum ¢ utilizado. A task de controle é dividida em duas partes: A primeira possui maior
prioridade, e basicamente calcula o sinal de controle, com base no erro do sistema. A segunda

parte envia a mensagem CAN.

3.5 Dificuldades encontradas

Mesmo apds tentativas de estabelecer a comunicagdo por SPI entre o microcontrolador
TINI e o driver de acionamento, isso ndo foi possivel devido a falta de confiabilidade na
transmissdo de mensagens principalmente por existirem interferéncias de ruidos. Além disso, a
maior velocidade que a conexdo possivelmente proporcionaria ndo era suficientemente rapida

para que fosse efetuado um controle das plataformas mecanicas.

Planejou-se como solu¢do de longo prazo a utilizagdo do modo analdgico do driver, e a
introduc3o de dispositivos externos, conversores D/A e A/D. Porém, para isso seria necessério
a aquisicao de conversores capazes de se comunicar de forma serial, algo que impossibilitou a

realizacdo dessa alternativa.

Como solugao de curto prazo, simulou-se o conjunto driver-kit-mecanico diretamente no

microcontrolador TINI, para dar continuidade ao projeto.

3.6 Aquisicao e Tratamento de Dados

Ap6s a fase de implementacao do software, foi feita a aquisicao dos dados que trafegavam
pela rede CAN para sua posterior analise. Para isso, a placa PCAN PCI (figura 3.20) da
Peak System Technik foi utilizada em conjunto com o software PCAN Explorer 4 (figura
3.21). Este software permite o armazenamento de todas mensagens completas que trafegam

pela rede, com seus respectivos timestamps. Desse modo, é possivel elaborar um histograma

51

<Enpty> = Bytevalue10h
IntValue =626.20000
longValues=d18

Nux + Speedr=40 n/sec

Mux2 — BitsValus=0000000000010000
HotValue =0

Speed? =35 nrsec

= = Rcvsymbel (100K
B0 M
D Bkl Renote request 7

0
© 45 Mudynba (111H) e
. Enpty
e HexValue =3h
? 23 Syebiie LongValue=1000
'—'-_i&‘:wwm 035 01 VUsit 37 Wanual
13 ErumbDocuments
12 Erunivindom

¥ 100 3385 Tine

+
13 HewCieniSend

€
%
&
8

(23 Trammi Lists

} Symbols, 1 |)
o Teothed (500 KBi/emel 3 | I I [IHex+ Symbols 7

Figura 3.21: Software Pcan Explorer 4 utilizado para aquisicdo dos dados que trafegam na
rede CAN.

com a distribuicao dos tempos de amostragem. Além disso, pode-se utilizar os dados de
uma mensagem para tracar graficos do sinal de atuacdo e do sinal de saida de cada sistema

planta-controlador inserido na rede CAN.

Para o tratamento dos dados obtidos pelos softwares de aquisicdo, foi desenvolvido um
aplicativo em JAVA capaz de manipular o arquivo de saida do PCAN Explorer, de forma a

tornar facil o seu posterior estudo.

O arquivo de saida do PCAN Explorer destina uma linha para cada mensagem que trafega
na rede. Cada mensagem é entdo caracterizada pelo seu ID de destino, pelos seus dados (a
informacdo proprimente dita, na forma de quatro bytes em hexadecimal), e seu timestamp.
A aplicacao em JAVA gera arquivos independentes para cada conjunto de mensagens com o
mesmo ID em comum. Os dados da mensagem na forma de quatro bytes sio interpretados, e
o aplicativo salva no arquivo gerado o valor do tipo ponto flutuante correspondente ao vetor

de bytes.

Apds a fase de organizacdo dos dados aquisitacdo, uma rotina em Matlab foi implementada

52
para tracar os graficos de sinal de saida e de atuagdo para cada conjunto planta-controlador,
e para criar o histograma de variacdao do tempo de amostragem.

Para a comparacdo de diferentes algoritmos de controle, além da inspecao visual dos

graficos tracados, uma analise matematica também foi levada em consideragao.

T ina
? _ fO ! l(yideal(t) - ysimulado(t))2 dt

Tf inal

O erro quadratico médio acima ¢ calculado para cada algoritmo de controle. O vetor de

dados aquisitados é comparado a um vetor do sinal de saida ideal, simulado no matlab.

3.7 Simulacao de Sistema Distribuido

A partir da modelagem da planta real como um sistema de primera ordem, obteve-se o
modelo discretizado pelo método de Tustin. Esse, por sua vez, pode ser representado pela
equacao de diferencas apresentada a seguir, a qual é utilizada no algoritmo de simulagao do
TINL

A-ulk)+B-uk—1)—-C-y(k—1)
T,+2-T

u(k) =

Para se obter uma melhor aproximacao com relacdo a planta real, foi feito uma compen-
sacao dos parametros da equagao de forma semelhante ao que foi feito no controlador PI.
Uma interrupcdo foi configurada especificamente para fins de temporizacdo, sendo utilizada
para medir o periodo de amostragem real, isto é, o intervalo de tempo entre duas mensagens
consecutivas recebidas do controlador. Dessa forma, a planta permite simular os efeitos cau-
sados pela variacdo do periodo de atuacdo, mostrando-se sensivel aos possiveis atrasos que

surgem no sistema.

Para cada mensagem de controle recebido pela rede CAN, o microcontrolador TINI calcula
a saida conforme equac3o acima e logo depois retorna a mensagem de feedback pela rede. O

calculo relativo a simulacdo da planta é feita pela funcdo a seguir.

float simulatePlant(){

oldcount = count;

count = 0;

l

CAN BUS

<€
<€

Figura 3.22: Esquema da simulagdo do sitema distribuido.

stime = (float)oldcount/19200.0; //cdlculo do periodo para compensagio
pA = PLANT K*stime; //atualizag8o dos paradmetros

PB = pA;

resetwdtimer(); //reseta o timer do Watchdog

pC = stime - 2%PLANT_T;

y = (pAxu + pBxu_1 - pCxy_1)/(stime + 2*PLANT_T); //eq de diferengas
resetwdtimer(); //reseta o timer do Watchdog

y_1 = y; //armazena os valores atuais das variaveis

u_l = u;

return y,

3

53

A simulacdo é feita em cinco microcontroladores, quatro TINIs e um ARM7. Cada um

possui uma planta ligeiramente diferente, com controladores especificos. A configuracgao final

pode ser vista na figura 3.22

Figura 3.23: Simulagdo do Sistema Distribuido.

54

55

4 RESULTADOS

4.1 Plataforma Mecanica

O kit mecanico foi inteiramente projetado, pois um produto comercial semelhante possui
custo muito alto. Foram feitos desenhos em programas de CAD, e o desenvolvimento foi

documentado.

A construcdo do protétipo da plataforma mecanica foi feita utilizando-se materiais de
facil aquisicdo, como acrilico e aluminio. Para a fabricacao das pecas, foram utilizados os
equipamentos da oficina do Departamento de Engenharia Mecatronica da USP. O kit foi

testado no Laboratdrio de Sistemas Embarcados.

Fotos das plataformas mecanicas podem ser vistas na figura 3.8.

4.2 Bridge de Rede

Foi implementada a rede CAN no microcontrolador TINI, bem como foi configurada a
comunica¢do SPI, o que permitiria o uso do dispositivo como um bridge de rede. Porém, pelas
dificuldades abordadas nas secdes anteriores, a comunicacdo SPI n3o foi utilizada, e o driver

de acionamento e o kit mecanico foram simulados no TINI.

4.3 Software de Controle

Foram desenvolvidos trés tipos de algoritmos de controle para sistemas de primeira ordem.
O primeiro consiste num controlador proporcional-integral comum. No segundo, os coeficientes
da equacdo de diferenca sao recalculados conforme o dltimo tempo de amostragem medido
pelo sistema de tempo real no ARM7. O dltimo, por sua vez, é dividido em subtasks, de forma
a priorizar a periocididade na amostragem e calculo do sinal de controle, enquanto que o envio

do mesmo para a rede CAN possui uma relevancia menor.

56

4.4 Simulacao do Sistema Distribuido

Foi desenvolvido um main loop em linguagem C para o TINI e para o ARM o qual recebe
a mensagem de controle, simula a planta real, e retorna a resposta da mesma pela rede. Foi
feito uma compensacdo no periodo de amostragem para aprimorar a aproximacao do modelo

com relacdo a planta real.

4.5 Analise dos Controladores

O conjunto de aquisicao de dados permitiu a analise dos dados que trafegaram pela rede
CAN. Com base nessas informacdes, pode-se avaliar o desempenho dos trés algoritmos de

controle.

A planta do caso estudado nas analises seguintes, possui ganho igual a 1.8 e constante
de tempo de 1.8 segundos. O periodo de amostragem utilizado foi de 8ms. O controlador
projetado no dominio continuo possui parametro proporcional igual a 0.262884, e tempo de

integracao aproximadamente igual a 0.2s.

4.5.1 Controlador PI

A figura 4.1 apresenta o grafico de sinal de saida e de atuacdo do controlador simples da
planta simulada no microcontrolador ARM7, quando a rede de comunicacao era compartilhada
por cinco nds. A linha continua represena os sinais ideais simulados em MATLAB, enquanto

que a linha tracejada apresenta os dados experimentais.

Observa-se claramente que o congestionamento da rede CAN prejudica o desempenho do
controlador, a ponto de tornar o sistema instavel. Esse efeito ocorre devido principalmente a

perda de mensagens, o que introduz atrasos consideraveis no sinal de controle.

O erro quadratico médio calculado chegou a ordem de 10° para esse caso da figura apresen-
tada. Esse valor alto é explicado pela crescente amplitude de oscilacao devido a instabilidade

do sistema.

4.5.2 Controlador Pl com Compensacao

O controlador Pl compensado apresentou um melhor desempenho com relacdo ao caso

anterior. Os graficos (figura 4.2) mostram que o sistema convergiu, porém com considerdvel

— — —Resposta Experimentsl
Resposta Ides!

v V)
[iy)

U
=
T

Figura 4.1: Controlador PI: Sinal de saida e de atua¢do para um conjunto

planta-controlador

oscilacdo em relacdo a curva tedrica.

O erro quadratico encontrado foi de 6.1592 para o exemplo da figura 4.2.

4.5.3 Controlador Pl dividido em Subtasks

57

O controlador Pl dividido em subtasks mostrou um desempenho melhor do que os dois

casos acima. Com base nos graficos tragados (figura 4.3), o desempenho é semelhante ao

caso do controlador Pl com compensacdo. Porém, o erro quadratico médio mostra que esse

controlador obteve melhores resultados.

O valor do erro quadratico médio foi de 1.1524.

4.6 Andlise da Variacao do Tempo de Amostragem

Foram coletados os intervalos entre mensagens de um mesmo conjunto planta-controlador,

sendo possivel criar histogramas e comparar a distribuicao dos tempos de amostragem para

diferentes cargas sobre a rede CAN.

O conjunto planta-controlador do caso estudado possui ganho igual a 1.8 e constante de

tempo de 1.8 segundos. O periodo de amostragem utilizado foi de 8ms.

Com base nos histogramas, pode-se constatar a enorme amplitude na variacdo do periodo

de amostragem. Houve casos onde o atraso foi maior do que um periodo de amostragem, o

58

I
— —— Resposta Experimental
Resposta Ideal

Figura 4.2:
conjunto planta-controlador

Controlador Pl com compensac3do: Sinal de saida e de atuacdo para um

0 T T T T
— — —Resposta Experimental : P
20 Resposta [deal - f‘r A
B : -
: I
... T
L e—m e — e ,_,// e s
TG 5\.\ - —
=
N
A e e g e -
o0 1 | | i 1 1 |
i} 04 1 15 2 24 3 35 4
t
10 T T 1
: e
51 bt RN B
- g -
_ - T A kS
— — - - L,
O T T U [T U OO UUUUUT DUUUUU ET _
=] Tl =T i
- Y
= \\,
0 1 | | 1 1 1 |
i} 04 1 15 2 24 3 35 4
t(sec)

Figura 4.3: Controlador PI divido em Subtasks: Sinal de said
conjunto planta-controlador

a e de atuacdo para um

2600
| I SRR L G S PR e
2000+
700} sl donnloralpe i
| ERRRR R bt R el S Shement Tobt
e "
3 e e [T sy SRS
i E
3 A -
00]-
200)— et B
100
0 2 5 .‘é T I S N TR
smp (ms) tempa (ms)
- T
00
£ M SO
2 wofo - s
-E i g 200
) I 3
L R B
. .)
B F | I P
0 2 4 L3 8 10 12 4 16 18 [] 5 10 15 20 25 30 kL
tampa (ms) tempo (ms)

3 plantas 4 plantas

5 plantas

Figura 4.4: Histogramas para os Tempos de Amostragem

60

que é apresentado no gréafico como incidéncias com valores menores do que 8ms (Periodo de

amostragem ideal).

Os resultados obtidos foram o projeto, construcdo, e teste da plataforma mecanica, de-
senvolvimento do software que implementa o protocolo CAN, e o desenvolvimento do software

de controle.

O kit mecanico foi inteiramente projetado, pois um produto comercial semelhante possui
custo muito alto. Foram feitos desenhos em programas de CAD, e o desenvolvimento foi

documentado.

A construcdo do protétipo da plataforma mecanica foi feita utilizando-se materiais de
facil aquisicao, como acrilico e aluminio. Para a fabricacao das pecas, foram utilizados os
equipamentos da oficina do Departamento de Engenharia Mecatronica da USP. O kit foi

testado no Laboratdrio de Sistemas Embarcados.

O software que implementa o protocolo CAN foi desenvolvido, permitindo a integracio

dos microprocessadores ARM 7 e TINI na rede de comunicagao.

O algoritmo de escalonamento implementado utilizado o sistema operacional de tempo
real RTX.

61

5 CONCLUSAO

O projeto de Sistemas de Controle Distribuidos de Tempo Real s3o, essencialmente, um
problema de co-projeto. Foi possivel por meio dos resultados constatar a existéncia de distur-
bios de rede. Para isso, foi desenvolvida uma rede com nimeros de nds varidveis representando
modelos de plantas, de forma a congestionar gradativamente a mesma. Com isso, obteve-se
uma relacao entre a utilizacdo da banda de rede e o desempenho do controlador, o qual é
prejudicado principalmente pelos atrasos ou perdas de mensagens. Pode-se afirmar que o
bom aproveitamento de um controlador depende do periodo de amostragem e da variagao
da laténcia de entrada e saida. Além disso, analisou-se trés tipos de algoritmos de controle,
cada um com suas respectivas peculiaridades. Baseado nos dados experimentais, recomenda-
se que o controlador leve em conta os atrasos no calculo de seus parametros, ajustando como
consequéncia o sinal de atuacdo. Considerando isso, é possivel ressaltar a importancia do
co-projeto, ou seja, da necessidade de se levar em conta aspectos de hardware e software no
projeto de um controlador, para que este tenha um aproveitamento melhor dos recursos do

sistema embarcado.

62

6 BIBLIOGRAFIA

[1] Wakamoto, E. Sistemas de controle distribuidos em redes de comunicagdo, Sdo Paulo,
20009.

[2] Liu, C.L. and Layland, J.W., Scheduling algorithms for multi-programming in a hard
real-time environment, Journal of the ACM, Vol 20, No. 1, pp. 40-61, 1973.

[3] Cervin, A. Integrated control and real-time scheduling, Ph.D. Thesis, Lund Institute of
Technology, 2003.

[4] Pazul, K. Controller Area Network (CAN) Basics, Microchip Technology Inc., 1999.

[5] ARM, Ltd. Getting Started: Building Applications with RL-ARM,ARM Ltd e ARM
Germany GmbH, 2009.

[6] Ogata, K. Modern Control Engineering, Prentice Hall, 2001.

[7] Andersson, M., Henriksson, D., Cervin, A. Truetime 1.5 Reference Manual, Lund
Institute of Technology, 2007.

[8] Andersson, M., Henriksson, D., Cervin, A. Arzén K.E. Truetime: Simulation of Net-
worked Computer Control Systems, Lund Institute of Technology, 2006.

63

7 APENDICE

7.1 Uma ferramenta de analise

7.1.1 A ferramenta TrueTime

O nao determinismo temporal introduzido pela rede de comunicacao acarreta uma perda
de desempenho significativa no sistema de controle. Nesse contexto, a ferramenta True-
Time é utilizada nesse trabalho para analisar os efeitos causados pelos atrasos no controlador.
Para uma descri¢do completa da ferramenta, consultar [8], [9]. TrueTime estd disponivel em

"http://www.control.lth.se/user/dan/truetime”.

A ferramenta em questao permite simular os aspectos temporais de sistemas de tempo
real e de redes com ou sem fio dentro do ambiente Simulink, junto com a dindmica em tempo
continuo da planta a ser controlada. A abordagem permite uma simulagdao com um riqueza

de detalhes préxima ao sistema real.

O programa consiste em uma biblioteca de blocos com as fun¢des de representar o kernel,
uma rede convencional, uma rede wireless, e a bateria. O bloco kernel executa processos pré-
definidos pelo usudrio, e lida com interrup¢oes causadas por algoritmos de controle, processos
de entrada e saida, interface de rede, além de possuir conversores A/D e D/A. A politica de
escalonamento utilizada pelo kernel é definida pelo usudrio. Para simular o sistema de controle
em tempo real, os blocos da biblioteca TrueTime s3o conectados com os convencionais blocos

do Simulink, sendo estes dltimos utilizados para construir graficamente o algoritmo de controle.

Os blocos de rede distribuem as mensagens entre os nés de acordo com o modelo de
rede escolhido. O TrueTime 1.5 suporta seis dos principais protocolos de controle acesso:
(CSMA/CD (Ethernet), switched Ethernet, CSMA/CA (CAN), token-ring, FDMA, e TDMA).
O bloco de rede sem fio proporciona a simulacdo dos padrdes IEEE 802.11 WLAN e IEEE
802.15.4 ZigBee. Somente as interacdes mais relevantes para o comportamento do sistema
em relacdo aos atrasos que sao modelados. Algumas delas sdo: atrasos de pré e pds pro-

cessamento, mecanismos de deteccao de colisao e de prevencdo de ocorréncia de colisdo, e a

64

Library: truetime

File Edit Wiew Format Help

w0 D
Snd Rew
Intermupts Schedule Snd 1 row data
anitors Schedule
Rew
P HE ethd:
TrueTime Metwork siisa

TrueTime Kemel

End Rew 71
P E = 1 Schedule data =nd
W P

TrueTime Batte
v TrueTime Wireless ttSendMzg

Nehwo e

TrueTime Black Library 1.5
Copyright () 2007
hartin Ohlin, Dan Henriksson and Anton Cersin
Department of Automatic Contral, Lund Uniwversity, Sweden
Fleaze direct questions and bug reports to: truetime@control.lth.se

Figura 7.1: Biblioteca de blocos do TrueTime

o007 —

e

Constant

Figura 7.2: Controlador Pl implementado em Simulink-Matlab

probabilidade de se perder pacotes.

Os cédigos das funcdes para os processos ou comandos de inicializacao podem ser feitos

em C++ ou em linguagem MATLAB.

7.1.1.1 Exemplo

Para uma melhor apresentacdo da ferramenta TrueTime, foi realizada uma simulag¢ao do
controle de dois motores de corrente continua que possuem a funcao de transferéncia a seguir:

1

- - 71
0.5s+1 ()

G(S)

O controlador utilizado é um Pl (Proporcional Integral) com K, = 2.8 e K; = 0.07

conforme a figura 7.2. Monta-se o esquema mostrado na figura 7.3 utilizando um bloco kernel

65

UL

Fulze
Generator

1

¥

ul hatar 1

e s 0.5z+1
Motor C.C.
074 uz

Snd

A

1

Intamupt= Sehedule - .
hator 2 | |
hianitars _|_>E 0.5e+1
R
F Terminatort Motor C.C.2
TrueTime Kernel
totor 2

Seope

Groundz2 Terminator

F

Groundd

i

Terminator

e

Clock Dizplay

Figura 7.3: Esquema utilizando biblioteca TrueTime.

que € inicializado pelo arquivo doismotoresTF.m. Este arquivo define o nimero de entradas e
saidas do bloco kernel, bem como a prioridade e periodo de cada processo. Além disso, permite
escolher a estratégia de escalonamento e os controladores a serem utilizados. Destaca-se o
fato de que foram utilizados controladores diferentes para cada uma das tasks, permitindo-se
o uso de tempos de execucao diferentes, sendo 3ms para a primeira, € 2ms para a segunda

task.

% doismotoresTF.m

function dois_motoresTF

ttinitKernel (4, 2, 'prioRM"); %lnicia o kernel com 4 entradas e duas

%saidas. Pode -se escolher 'prioRM' e 'prioEDF'

periods = [0.006 0.005]; %Periodo de cada task
prio = [1 1]; %Prioridade de cada task
names = {'motorl', 'motor2'};

Pc = {'Pcontrollerl',"Pcontroller2'}; %Controladores diferem no WCET das

tasks
rChans = [1 3]; %Seleciona entrada + do kernel
yChans = [2 4]; %Seleciona entrada - do kernel
uChans = [1 2]; %Seleciona saida do kernel
for i = 1:2
data.h = periods(i);
data.u = 0;

offset = 0;

data.lold = 0;
data.Dold = 0;
data.yold = 0;

66

data.rChan = rChans(i);

data.yChan = yChans(i);

data.uChan = uChans(i);

ttCreatePeriodicTask(names{i}, offset, periods(i), prio(i), Pc{i}, data);
%cria task

end

% Pl_controllerl.m

function [exectime, data] = Pcontroller(segment, data)

switch segment,

case 1,

inp(1) = ttAnalogln(data.rChan); %Lé& entrada positiva do kernel
inp(2) = ttAnalogln(data.yChan); %Lé& a entrada negativa do kernel
outp = ttCallBlockSystem (2, inp, '"PI2'); %Calcula a acido de controle
%(WCET = 2ms)

data.u = outp(1);

exectime = outp(2);

case 2,

ttAnalogOut(data.uChan, data.u); %Envia o sinal de controle
exectime = -1; % finished

end

