
MARCELO SHINMYO
MARCO ANTONIO GROTKOWSKY

PROJETO DE BANCADA DE TESTES PARA
SISTEMAS DE CONTROLE DISTRIBUÍDOS

UTILIZANDO MOTORES C.C.

São Paulo
2010

MARCELO SHINMYO
MARCO ANTONIO GROTKOWSKY

PROJETO DE BANCADA DE TESTES PARA
SISTEMAS DE CONTROLE DISTRIBUÍDOS

UTILIZANDO MOTORES C.C.

Monografia apresentada à Escola

Politécnica da Universidade de São

Paulo.

Orientador:

Prof. Dr. Newton Maruyama

São Paulo
2010

FICHA CATALOGRÁFICA

Shinmyo, Marcelo
Projeto de bancada de testes para sistemas de controle dis-

tribuídos utilizando motores C.C. / M. Shinmyo, M.A.
Grotkowsky. -- São Paulo, 2010.

66 p.

Trabalho de Formatura - Escola Politécnica da Universidade
de São Paulo. Departamento de Engenharia Mecatrônica e de
Sistemas Mecânicos.

1. Sistemas distribuídos 2. Algoritmos de Scheduling
3. Controle (Teoria de sistemas e controle) I. Grotkowsky,
Marco Antonio II. Universidade de São Paulo. Escola Politéc-
nica. Departamento de Engenharia Mecatrônica e de Sistemas
Mecânicos III. t.

DEDICATÓRIA

Dedicamos este trabalho a nossas faḿılias.

AGRADECIMENTOS

Agradecemos a nossas faḿılias, ao técnico Carlos Alberto de Souza Lima, e ao professor

orientador Newton Maruyama.

RESUMO

Objetiva-se nesse trabalho a construção de uma plataforma de testes para sistemas de
controle distribúıdos em redes de comunicação com o uso de motores de corrente cont́ınua. A
plataforma é composta de um motor a ser controlado e um motor atuando como gerador de
distúrbios de torque, ambos acoplados por uma inércia variável. Microcontroladores TINI são
aplicados no transporte de informações correspondentes à velocidade angular para uma rede
de comunicação CAN e para repassar os sinais correspondentes às ações de controle para os
drivers de acionamento. Para as tarefas que calculam as ações de controle, é utilizado um
sistema baseado no microcontrolador ARM7. As plataformas foram modeladas e simuladas
no microcontrolador TINI, atuando como nós na rede CAN e introduzindo atrasos. Por meio
do sistema distribúıdo, é posśıvel analisar: o desempenho do protocolo de comunicação CAN;
a influência dos algoritmos de controle em sistemas operacionais de tempo real (controlador
proporcional-integral, controlador com compensação de atraso do tempo de amostragem, con-
trolador utilizando técnica Subtask Scheduling).

ABSTRACT

This work deals with the implementation of a testbed for networked control systems using
DC motors. The platform is composed by the controlled motor and another motor actuating
as a torque disturbance generator, both coupled with a variable inertia. TINI microcontrollers
are applied on information transport from the position and torque sensors to the network and
to transmit the control action signal to the actuation drivers. For the control action calculation
tasks, an ARM7 based system is used. In order to plan the required computational power of
a networked controls system, we have devised an experimental setup with a single processing
unit node (Keil ARM7 Board) and nodes that simulates distributed plants (TINI). At first,
we evaluate network time-delay distributions and packet losses while increasing the number
of distributed plant nodes. Later we propose some computational techniques that introduces
modifications on the classical control algorithms (like sampling time adaption, subtask schedul-
ing, etc.) that can improve the control performance. At the end of this work, we draw some
preliminary conclusions about the resulting controllers performance.

LISTA DE FIGURAS

2.1 Atrasos indetermińısticos no loop de controle. 13

2.2 Protocolo SPI (Serial Peripheral Interface). 20

2.3 Microcontrolador TINI . 21

2.4 Placa de desenvolvimento MCB2300 com Microprocessador ARM 7 21

3.1 Concepção da plataforma de testes . 28

3.2 Modelo em três dimensões do kit mecânico. 29

3.3 Modelo renderizado em três dimensões do kit mecânico. 30

3.4 Mancal KSTM-10 fabricado pela Igus. 30

3.5 Polias modelos 173M9 e 303M9 fabricados pela Schneider. 31

3.6 Encoder série 40, fabricado pela Hohner. 31

3.7 Plataforma de testes. 32

3.8 Conjunto de quatro plataformas de testes. 33

3.9 Tabela de custos relacionados à matéria prima. 33

3.10 Desenhos e curva do motor Canon FN38 utilizado no projeto. 34

3.11 Plataforma Elétrica com fonte, drivers de acionamento, e microprocessadores

TINI. 35

3.12 Driver modelo PN420 projetado pela Peres e Noris Automação Ltda. 36

3.13 Esquema para identificação do sistema. 38

3.14 Placa de aquisição de dados PCI-6024E da National Instruments 38

3.15 Conector externo de 68 pinos da placa de aquisição. 39

3.16 Ponta do cabo CAN com resistor terminador). 44

3.17 Looping de controle utilizado. 45

3.18 Diagrama de Bode ilustrando efeito de atrasos no peŕıodo de amostragem. . . 46

3.19 Coeficientes da equação de diferenças do controlador compensado. 47

3.20 Placa Peak Pcan Pci utilizada para monitorar a rede CAN. 48

3.21 Software Pcan Explorer 4 utilizado para aquisição dos dados que trafegam na

rede CAN. 48

3.22 Esquema da simulação do sitema distribúıdo. 50

3.23 Simulação do Sistema Distribúıdo. 51

4.1 Controlador PI: Sinal de sáıda e de atuação para um conjunto planta-controlador 54

4.2 Controlador PI com compensação: Sinal de sáıda e de atuação para um con-

junto planta-controlador . 55

4.3 Controlador PI divido em Subtasks: Sinal de sáıda e de atuação para um

conjunto planta-controlador . 55

4.4 Histogramas para os Tempos de Amostragem 56

7.1 Biblioteca de blocos do TrueTime . 61

7.2 Controlador PI implementado em Simulink-Matlab 61

7.3 Esquema utilizando biblioteca TrueTime. 62

SUMÁRIO

1 Introdução 9

1.1 Objetivo . 9

1.2 Motivação . 9

1.3 Organização do Documento . 10

2 Conceitos e Tecnologias Envolvidas 12

2.1 Indeterminismo Temporal . 12

2.2 Técnicas de Escalonamento de Processos . 13

2.3 Subtask-Scheduling . 14

2.4 Protocolos de Comunicação . 15

2.4.1 O Protocolo CAN . 15

2.4.2 O Protocolo SPI . 19

2.5 O Microcontrolador TINI . 20

2.6 O Sistema Baseado no Microcontrolador ARM7 22

2.7 O Sistema Operacional de Tempo Real RTX 22

2.7.1 Tasks (Tarefas) . 23

2.7.2 Eventos . 23

2.7.3 Semáforos . 23

2.7.4 Mutex . 24

2.7.5 Mailbox . 24

2.7.6 Travamento e Destravamento de Tasks 25

2.7.7 Configuração . 26

2.7.8 Opções de Escalonamento no RTX 26

3 Metodologia 27

3.1 Concepção da Plataforma de Testes . 27

3.1.1 A Plataforma Mecânica . 28

3.1.2 A Plataforma Elétrica . 29

3.2 Modelagem e Identificação da Planta da Plataforma 35

3.2.1 Modelagem do Sistema . 35

3.2.2 Identificação do Sistema . 38

3.3 Redes de comunicação . 39

3.3.1 Configuração da rede CAN . 39

3.3.2 Comunicação SPI . 43

3.4 Controle do Sistema . 44

3.4.1 Controlador PI . 45

3.4.2 Controlador PI com Compensação . 45

3.4.3 Controlador PI dividido em Subtasks 47

3.5 Dificuldades encontradas . 47

3.6 Aquisição e Tratamento de Dados . 47

3.7 Simulação de Sistema Distribúıdo . 49

4 Resultados 52

4.1 Plataforma Mecânica . 52

4.2 Bridge de Rede . 52

4.3 Software de Controle . 52

4.4 Simulação do Sistema Distribúıdo . 53

4.5 Análise dos Controladores . 53

4.5.1 Controlador PI . 53

4.5.2 Controlador PI com Compensação . 53

4.5.3 Controlador PI dividido em Subtasks 54

4.6 Análise da Variação do Tempo de Amostragem 54

5 Conclusão 58

6 Bibliografia 59

7 Apêndice 60

7.1 Uma ferramenta de análise . 60

7.1.1 A ferramenta TrueTime . 60

12

1 INTRODUÇÃO

1.1 Objetivo

Objetiva-se nesse trabalho a construção de uma plataforma de testes para sistemas de

controle distribúıdos em redes de comunicação com o uso de motores de corrente cont́ınua.

Analisa-se do uso do protocolo de comunicação CAN como meio de transmissão de sinais

entre plantas e controlador. Verifica-se a interferência de atrasos determińısticos ou não-

determińısticos no desempenho do sistema de controle.

Como terceiro objetivo, estuda-se a influência de algoritmos de controle em sistemas

operacionais de tempo real. São estudados controlador Proporcional-Integral, controlador

com compensação de atrasos no tempo de amostragem, e controlador utilizando a técnica de

Subtask Scheduling.

Com isso, esse trabalho visa o estudo de técnicas de co-projeto (co-design), que é o projeto

do sistema de controle levando-se em consideração o algoritmo de escalonamento.

1.2 Motivação

Produtos modernos como carros, celulares, MP3/DVD players, video games, utilizam sis-

temas embarcados para implementar muitas de suas funcionalidades. Essas, por sua vez, ne-

cessitam de recursos computacionais f́ısicos (hardware) que executam operações pré-definidas

em um software.

Sistemas de controle embarcado geralmente possuem vários processos sendo executados

paralelamente, inclusive vários processos de controle. Dessa forma, o escalonamento de tarefas

se torna importante pois decide qual processo será executado em um determinado instante.

Desde meados de 1970 o interesse acadêmico em escalonamento tem sido grande, mas pouco

trabalho focou nas tarefas de controle. Além disso, a teoria de controle não estuda o prob-

lema dos recursos de hardware limitados ou compartilhados. Em vez disso, assume-se que o

13

controlador utiliza um computador dedicado.

Não há, em geral, incentivo para se estudar a possibilidade de conciliar o desenvolvimento

do sistema de controle com a estratégia de escalonamento dos processos, uma vez que o au-

mento do poder de processamento resolve os problemas de desempenho do sistema. Apesar

disso, os fabricantes ainda demonstram dificuldades em alocar tarefas em processadores alta-

mente carregados, considerando que visa-se a utilização do hardware mais econômico posśıvel.

Os sistemas de controle atuais geralmente são distribúıdos em uma rede, onde sensores e

atuadores se encontram em diferentes nós. São, também, tratados como componentes de soft-

ware e espera-se que eles possam suportar mudanças de hardware, upgrades online, etc. Dessa

forma, esses sistemas apresentam alta flexibilidade. Por outro lado, são não determińısticos,

introduzindo variações de tempo que prejudicam o desempenho do controlador.

Consequentemente, para se obter melhor desempenho no controle quando se dispor de

recursos de hardware limitados, deve-se integrar o projeto do controlador com o projeto do

escalonador de processos [3].

1.3 Organização do Documento

Este documento foi estruturado da seguinte maneira:

� Caṕıtulo 1 (Introdução):

Apresenta objetivo, motivação, e a forma em que o documento está organizado.

� Caṕıtulo 2 (Conceitos e Tecnologias Envolvidas):

Conceitos sobre indeterminismo temporal. Descrição das técnicas de escalonamento de

processos Fixed Priority (FP) e Earliest Deadline First (EDF). Subtask-Scheduling. Ap-

resentação dos protocolos de comunicação SPI e CAN. Descrição dos microcontroladores

TINI e ARM7. Sistema operacional de tempo real RTX.

� Caṕıtulo 3 (Metodologia):

Descreve a concepção da plataforma de testes. Apresentação do kit mecânico e elétrico

com os respectivos desenhos esquemáticos e especificações. Modelagem e Identificação

da Planta da Plataforma. Configuração da rede CAN e SPI. Técnicas de Controle

utilizadas. Aquisição e tratamento dos dados, e simulação do Sistema Distribúıdo.

� Caṕıtulo 4 (Resultados):

14

Apresenta os resultados obtidos, como: Plataforma Mecânica, Bridge de Rede, Software

de Controle, Simulação de Controle, Simulação do Sistema Distribúıdo, Análise dos

Controladores e dos atrasos.

� Caṕıtulo 5 (Conclusão):

Discute brevemente os resultados e apresenta as considerações finais.

� Caṕıtulo 6 (Referências Bibliográficas):

� Caṕıtulo 7 (Apêndice):

Apresenta uma ferramenta para simular os aspectos temporais de sistemas de tempo

real e de redes.

.

15

2 CONCEITOS E TECNOLOGIAS ENVOLVIDAS

2.1 Indeterminismo Temporal

Um loop de controle consiste principalmente em entrada de dados, cálculo do sinal de

controle, e escrita da sáıda. No caso ideal, o algoritmo de controle é executado periodicamente

conforme o peŕıodo de amostragem, e o tempo entre a leitura e a escrita de dados deve ser

despreźıvel. Na prática, existem diversas formas de atraso presentes do sistema, conforme

apresentado na figura 2.1.

O peŕıodo de amostragem que assume-se constante é h. Porém, existe um atraso LS entre

o momento em que o escalonador coloca a task na condição Ready, e o momento em que ela

de fato é executada. Esse atraso é chamado de latência de amostragem, e ocorre devido à

interrupção da task em questão por outras de maior prioridade (ou seja, depende da poĺıtica

de escalonamento). O tempo entre a leitura e escrita de dados Lio corresponde à latência de

entrada e sáıda.

A variação da amostragem é definida como:

JS = Lmax
S − Lmin

S

Define-se variação do intervalo de amostragem como:

Jh = hmax − hmin

Analogamente, a variação do tempo entre a entrada e sáıda é:

Jio = Lmax
io − Lmin

io

16

Figura 2.1: Atrasos indetermińısticos no loop de controle.

2.2 Técnicas de Escalonamento de Processos

Sistemas de tempo real possuem deadlines, que são limites superiores de tempo aos quais

o processo não deve ultrapassar. Nesse tipo de sistema, é essencial que exista uma análise

anterior à implementação. O objetivo é que se possa garantir que todas as tarefas sejam

executadas antes do seu deadline.

A estratégia de escalonamento pode se dar na forma estática ou dinâmica. O primeiro

modelo consiste em uma tabela com uma sequência de tarefas a serem executadas ciclicamente.

Esta tabela é baseada em algoritmos de otimização previamente elaborados. Porém, este

modelo não suporta a modificação da tabela durante a execução, dificultando a integração

com o sistema de controle.

A segunda forma na qual a estratégia de escalonamento pode se apresentar é dinâmica,

pois o processo a ser executado é definido durante a execução do programa. Os algoritmos

de escalonamentos que serão estudados nesse trabalho foram primeiramente apresentados em

1973 por Liu e Layland [2], e diferem na condição suficiente para alterar a prioridade das

tarefas. Serão analisados o Earliest Deadline First (EDF), e o Rate Monotonic (RM). Nesse

trabalho, é utilizado o termo Fixed Priority ou FP para se referir à técnica RM.

O EDF significa ”prazo-mais-curto-primeiro”e dá maior prioridade ao processo em que seu

deadline está mais próximo de ser atingido. O FP, prioridade-fixa, considera como tarefa de

maior prioridade aquela que possui o menor peŕıodo de execução.

Para a melhor análise do EDF e RM, [2] propõe as seguintes hipóteses:

� Todos processos são periódicos e possuem um peŕıodo Ti,

� Todo processo possui umWorst Case Execution Time (WCET), que é o tempo que o pro-

cessador requer para executar determinado processo no pior caso posśıvel, considerando

que apenas essa tarefa é realizada. O WCET será representado por Ci,

� Toda tarefa possui um deadline Di conhecido e igual ao peŕıodo:Di = Ti,

17

� Não há comunicação entre processos,

� Operações internas ao sistema operacional não requerem tempo de execução.

Em [2], é apontado que, considerando U a carga da CPU, no caso do EDF:

U =
n∑

i=1

Ci

Ti

≤ 1 (2.1)

Dessa forma, temos que para uma utilização de 100 % da CPU, ainda se pode cumprir

todos os deadlines.

Para o FP, temos:

U =
n∑

i=1

Ci

Ti

≤ n(2
1
n − 1) (2.2)

Nesse caso, se n tende ao infinito e para os deadlines serem cumpridos, temos que U ≤
0.693.

Nos últimos anos a análise do EDF e do FP têm sido refeitas considerando hipóteses menos

restritivas.

2.3 Subtask-Scheduling

Uma implementação trivial de múltiplos controladores numa mesma plataforma consiste

no uso do algoritmo de escalonamento First Priority e da utilização de somente uma task para

cada controlador. A cada peŕıodo de amostragem, a entrada é lida, o algoritmo de controle

é executado, e a sáıda é escrita. Quando executado em um sistema de tempo real, atrasos

indetermińısticos causados pelo escalonamento são introduzidos. Desse modo, o desempenho

do controlador, como um todo, é prejudicado pelo aparecimento de grandes atrasos como:

latência de amostragem, latência de entrada e sáıda, e variações no peŕıodo de amostragem.

Para uma boa performance do controlador, além do fato de que os cálculos devem ser

finalizados antes do deadline correspondente, é importante que as operações de amostragem

e de atuação sejam regulares, e livres de variações ou latências consideráveis.

Objetivando-se reduzir a latência, pode-se dividir o algoritmo de controle em tasks difer-

entes, e escalona-las individualmente definindo-se diferentes prioridades para cada uma delas.

O conceito principal do Subtask Scheduling, apresentado em [3], é dividir o algoritmo de con-

trole em duas tasks, onde a porção cŕıtica em que se calcula o sinal de controle forma a task

Calculate Output, e o resto das operações constituem a task Update State. Nota-se que a

18

task que calcula a sáıda é mais cŕıtica do ponto de vista temporal, pois espera-se que ela seja

executada precisamente a cada peŕıodo de amostragem. A task responsável pela escrita da

sáıda deve ser cumprida até o peŕıodo de amostragem. A redução da latência de entrada e

sáıda pode ser provada pela análise que considera o pior tempo de execução (onde a task que

calcula o sinal de controle é interrompida por todas tasks que possuem prioridade superior à

ela), e consequentemente, a maior latência posśıvel.

O caso ideal de implementação do Subtask Scheduling utilizando First Priority ocorre

quando todas as tasks de cálculo do sinal de controle possuem prioridades mais altas do que

todas as tasks de escrita da sáıda. Porém, esse tipo de definição de prioridades pode levar ao

caso de impossibilidade de escalonamento. Para esses casos problemáticos, existem algoritmos

que minimizam os deadlines (e consequentemente aumentam as prioridades) das tasks de

cálculo do sinal de controle a partir de modelos escalonáveis.

2.4 Protocolos de Comunicação

2.4.1 O Protocolo CAN

O Controller Area Network (CAN) foi criado em meados dos anos 80 pela fornecedora de

sistemas automotivos Bosch. O principal objetivo era fazer uma comunicação serial robusta e

aumentar assim a confiabilidade, sendo hoje vastamente empregada na automação industrial

e sistemas embarcados automotivos [4].

O CAN, juntamente com muitos outros protocolos, utiliza o modelo de camadas padrão,

Open Systems Interconnection (OSI) da ISO, o que a prinćıpio permite a interoperabilidade

de produtos de diferentes fabricantes. No CAN as 2 últimas camadas da OSI já são im-

plementadas, deixando as camadas superiores à disposição ao desenvolvedor para eventuais

adaptações ou otimizações. Essas camadas sujeitas à implementação são em geral usadas para

padronizar os procedimentos de inicialização, escolher endereços para os tipos de mensagens e

os nós participantes, determinar as estruturas das mensagens , prover rotinas para tratamento

de erros, entre outras aplicações.

O CAN é um protocolo do tipo CSMA/CD (Carrier Sense Multiple Access with Collision

Detection). Isso significa que cada dispositivo deve monitorar o bus de comunicação por um

peŕıodo determinado de tempo antes de transmitir alguma informação. Após esse intervalo,

todos os dispositivos têm a mesma oportunidade de envio de mensagem. Há, porém, uma

prioridade definida para cada nó e um sistema de detecção de colisões. Assim quando duas

19

transmissões se iniciam ao mesmo tempo, somente a mensagem de maior prioridade é enviada,

sem sofrer atraso ou corrompimento.

Nesse protocolo o ńıvel lógico dominante é o 0, consequentemente o recessivo é o 1.

Portanto o identificador de mensagem(campo utilizado para a arbitragem de prioridade) que

tiver o menor valor será o de maior prioridade. Como foi citado, cada dispositivo monitora

o bus para verificar se o bit que está tentando enviar é o que é de fato encontrado no bus.

Em um caso de colisão, em algum momento o bit da mensagem de menor prioridade será

”dominada”pelo ńıvel lógico 0, cientificando o dispositivo de que há colisão e fazendo esse

último parar de transmitir imediatamente.

A transmissão de mensagens não são baseadas em endereçamento, cada mensagem contém

a definição da própria prioridade além dos dados a serem enviados. Logo todos os nós da rede

recebem as mesmas mensagens, e cabe à elas decidir se as descarta ou se as processa. Uma

vantagem é a facilidade para incluir novos nós no sistema por não necessitar reprogramar todos

os outros para reconhecer essa ação. Os novos dispositivos recebem todas as mensagens

enviadas, bastando somente escolher qual delas processar. Apesar dessas caracteŕısticas, o

CAN permite também que um nó requeira informação de um outro especificamente. Isso é

chamado de RTR, Remote Transmit Request.

Utilizam-se 4 tipos de mensagens no CAN: Data Frame, o mais comum deles, usado para

transmitir dados para algum ou todos os nós; o Remote Frame, usado especificamente para

RTR; Error Frame, o qual é gerado para indicar algum dos erros definidos no protocolo; e

Overload Frame, o qual também indica erro, porém especialmente em caso de sobrecarga de

algum nó, quando uma mensagem é recebida antes de terminar o processamento da anterior.

Um Data Frame é formado por Arbitration Field, Control Field, Data Field, CRC Field,

2 bits de Acknowledge Field e o End of Frame. O Arbitration Field é usado para priorizar as

mensagens como já foi comentado, ou então para determinar se a mensagem é um Remote

Frame. É composto por 12 ou 32 bits dependendo do tipo de Data Frame, o qual pode ser

um Standard Frame ou Extended Frame.

O Control Field é composto por 6 bits, sendo que para um Standard Frame o mais signi-

ficativo será um bit dominante e o segundo é reservado. No caso de um Extended Frame os

2 bitssão reservados. Os 4 últimos bits determinam o tamanho dos dados. O Data Field são

os dados com o tamanho especificado pelos 4 bits citados.

O CRC Field consiste em 16 bits, 15 para o valor do CRC (Cyclic Redundancy Check) e

um bit delimitador. É usado pelos nós receptores para identificar se ocorreu algum tipo de

20

corrompimento no dado. O Acknowledge Field é usado para indicar se a mensagem foi recebida

corretamente, em caso positivo o nó receptor coloca o ńıvel lógico dominante no instante do

ACK Slot bit. Finalmente, 7 bits recessivos compõem o End of Frame.

Os nós de uma rede CAN são capazes de verificar o ńıvel de falha existente e mudar

para diferentes modos de funcionamento. Podem, por exemplo, desligarem-se completamente

dependendo da gravidade da falha. Dessa forma, os nós com erro deixam de ocupar a banda

do bus, deixando-o livre para informações cŕıticas.

Existem 5 tipos de erros no CAN:

� CRC Error: O valor dos 15 bits de CRC são calculados pelo dispositivo transmissor e é

enviado no CRC field. Todos os receptores calculam o CRC e verificam se corresponde

ao recebido. Em caso negativo, é gerado um Error Frame e a mensagem é reenviada

depois de um intervalo de tempo apropriado.

� Acknowledge Error: Na transmissão de um Data Frame, se pelo menos um dispositivo

recebeu a mensagem corretamente o ACK Slot bit será dominante. Caso o transmissor

verifica que esse último é recessivo, um Error Frame é gerado e a mensagem é reenviada

após um intervalo de tempo.

� Form Error: São diversos os bits reservados para serem recessivos, como no End of

Frame, intervalo entre transmissões, Acknowledge Delimiter ou CRC Delimiter. Caso

seja encontrado o ńıvel lógico dominante em algum desses bits, é gerado um Error Frame

e a mensagem é retransmitida.

� Bit Error: Ocorre se o transmissor envia um bit dominante e detecta um bit recessivo

ou envia um recessivo e detecta um dominante. Não se considera um Bit Error quando

isso é verificado no Arbitration Field ou Acknowledge Slot, em que isso já faz parte da

funcionalidade do protocolo. Em caso de erro, gera-se o Error Frame e a mensagem é

reenviada.

� Stuff Error: O CAN usa o método de transmissão Non-Returnn-to-Zero (NRZ). No

método Return-to-Zero (RZ), o sinal retorna para 0 para cada bit de informação, assim

o sinal é self-clocking, isto é, não exige um clock adicional para fins de sincronização. No

CAN não há, portanto, esse retorno para zero, logo a informação a ser transmitida sempre

estará no bus, e os dispositivos somente sincronizam na transição de um bit recessivo para

dominante. O CAN automaticamente coloca um bit de ńıvel lógico oposto quando há

mais de 5 bits consecutivos iguais, e isso é utilizado pelos dispositivos para sincronização.

21

Dessa forma, o erro é gerado quando se detecta 6 ou mais bits consecutivos de mesmo

valor, nesse caso um Error Frame é gerado e a mensagem é repetida.

A detecção de algum tipo de erro se torna pública na rede através dos Error Frames

ou Error Flags. A mensagem com erro é reenviada assim que o bus estiver desocupado e o

nó vencer novamente a arbitragem. Para diferenciar falhas temporárias de permanentes, o

CAN possui dois contadores de erros associados à cada nó, o REC (Receive Error Counter)

e o TEC (Transmission Error Counter). Esses contadores são incrementados a cada falha e

decrementados para cada sucesso de transmissão ou recepção. Dependendo do valor desses

contadores, um dispositivo pode estar em 3 estados de falha:

� Error-Active: O nó estará nesse estado caso tenha o valor de TEC e REC abaixo de

128 e pode enviar Active Error Flags, que são 6 bits dominantes consecutivos. Isso gera

um Stuff Error em todos os receptores, fazendo-os enviar seus respectivos Error Flags,

chamados de Error Echo Flags, podendo totalizar mais de 12 bits dominantes. O estado

Error-Active indica condições normais, permitindo o dispositivo a transmitir e receber

mensagens sem restrições.

� Error-Passive: Um nó passará para esse estado quando o TEC ou o REC estiver maior

que 127. No lugar do Active Error Flags, poderá somente enviar Passive Error Flags,

6 bits recessivos consecutivos. Caso haja sucesso na transmissão poderá gerar os Error

Echo Flags, porém se for interrompido por algum bit dominante, terá de esperar que o

bus fique desocupado por 8 bits antes de retransmitir.

� Bus-Off: Estarão nesse estado os nós que tiverem somente o TEC maior que 255. Os

dispositivos nessa condição não podem enviar ou receber mensagens ou Error Flags de

qualquer tipo. Há, porém, uma sequência de recuperação definida no protocolo para

que os nós nesse estado possam retornar à condição de Error-Active, podendo reiniciar

as transmissões caso a falha tenha sido removida.

O CAN é, pois, um protocolo voltado para a transmissão de dados relativamente pequenos

com alta confiabilidade. Pelo fato de não ser baseado em endereçamento, não há necessidade

de modificar a mensagem para transmissões de nó para nó ou multicast. O sistema de confi-

namento de falha não permite que um único dispositivo com falha possa colocar a rede abaixo,

garantindo banda para que mensagens cŕıticas sejam enviadas. Todas essas vantagens são o

motivo da expansão de seu uso para além dos véıculos automotivos, sendo sempre visto como

uma alternativa no desenvolvimento de sistemas embarcados.

22

2.4.2 O Protocolo SPI

Considerando o aumento da complexidade das aplicações da microeletrônica, é muito

comum hoje que se conectem diversos dispositivos, nos quais se incluem diferentes microcon-

troladores, para que se possa obter uma determinada funcionalidade. O SPI é um protocolo

que surgiu com o intuito de facilitar essa comunicação entre múltiplos processadores. Uma de

suas principais vantagens é que pode ser implementado inteiramente por software, permitindo

assim comunicar um processador que possui o hardware do SPI com um que não possui.

Todo sistema composto por esse protocolo possui um mestre e um ou mais escravos. O

mestre é o dispositivo que providencia o clock que sincroniza a comunicação, portanto os

escravos são os que recebem esse sinal.

Basicamente 4 sinais são necessários para compor uma comunicação SPI: MOSI (Master-

Out / Slave-In), MISO (Master-In / Slave-out), SCK (Serial Clock), e SS (Slave-Select) .

O pino MOSI é designado como um pino de sáıda para o mestre e entrada para o escravo. O

mestre utiliza esse pino para enviar mensagens ao escravo, sendo que os bits mais significativos

são enviados primeiro.

O pino MISO é um definido como entrada no mestre e como sáıda no escravo, logo o

escravo o utiliza para enviar mensagens ao mestre.

Toda comunicação é sincronizada por um clock, e um bit é enviado a cada pulso de clock.

Cada mensagem é composta por um byte, logo requere 8 pulsos de clock para ser enviada.

O SS é utilizado pelo mestre para escolher com qual dos escravos se comunicará, logo

diversos pinos podem ser utilizados para essa função, sendo que são definidos como sáıda no

mestre e entrada no escravo. Esse sinal é ativo em 0, assim deve ser colocado nesse valor

antes do ińıcio dos pulsos de clock.

Um dos elementos principais do funcionamento do SPI é o SPI Data Register, um reg-

istrador de 8 bits. O mestre e cada escravo possuem seus próprios registradores, os quais estão

ligados pelo MOSI e MISO. Considerando um mestre e um escravo, forma-se um registrador

de 16 bits cont́ınuos. Quando uma mensagem é enviada, esse registrador é deslocado de 8

bits, trocando o conteúdo dos 2 registradores de 8 bits.

O SPI permite selecionar a polaridade e a fase do serial clock a partir de 2 parâmetros, o

CPOL (Clock Polarity) e CPHA (Clock Phase), havendo 4 posśıveis configurações.

Quando o CPHA é 0, a amostragem do dado é feita na primeira borda de clock depois

23

Figura 2.2: Protocolo SPI (Serial Peripheral Interface).

que o SS é colocado em 0. Na segunda borda, ocorre o deslocamento de um bit nos shift

registers, e esse processo se repete nas 16 bordas que compõem a transmissão.

Alguns hardwares requerem que primeira borda de SCK ocorra a antes que o dado esteja

dispońıvel no pino de sáıda. Nesse caso o CPHA deve ser 1, e a amostragem ocorre na segunda

borda de clock.

Quando CPOL = 0, o ńıvel lógico 0 é produzido em regime pelo pino SCK quando não

houver transmissão. Analogamente, para CPOL = 1 o ńıvel lógico de regime será 1.

O SS pode permanecer ativo em transmissões sucessivas no caso de CPHA = 1. Porém,

no caso de CPHA =0, o sinal SS é utilizado para disponibilizar o primeiro bit mais significativo

na porta.

2.5 O Microcontrolador TINI

O microcontrolador TINI Maxim DS80C400 da Dallas Semiconductor é um dispositivo

8051 que oferece como periféricos um 10/100 Ethernet MAC, 3 portas seriais, um controlador

CAN 2.0B, 1-Wire Master e 64 pinos de Entrada/Sáıda. Apresenta uma pilha TCP Ipv4/6 com

capacidade para até 32 conexões simultâneas com taxa máxima de transferência de 5Mb/s.

Seu clock máximo é de 75MHz, o que resulta em um tempo ḿınimo de ciclo de instrução de

54ns.

Suas principais aplicações são:

Controle e Automação Industrial

24

Figura 2.3: Microcontrolador TINI

Figura 2.4: Placa de desenvolvimento MCB2300 com Microprocessador ARM 7

Monitoramento de Ambiente

Sensores de rede

Automação residencial ou de escritório

Os aplicativos podem ser programados em 3 linguagens: C, Assembly (8051) ou Java

(JDK 1.2.2 a 1.4). Os programas serão desenvolvidos em um PC e carregados no dispositivo

por conexão serial, utilizando o software JavaKit fornecido.

25

2.6 O Sistema Baseado no Microcontrolador ARM7

O ARM7 é um microcontrolador com arquitetura RISC de 32 bits e vem se constituindo

como um dos microcontroladores mais utilizados. Vários fabricantes produzem o mesmo

microcontrolador mas com diferentes configurações internas de Entrada/Sáıda [5].

O ARM7 é bastante utilizado na indústria automobiĺıstica em aplicações com barramento

CAN, e se caracteriza por ter alta conectividade, usualmente contendo protocolos UART, I2C,

CAN e Ethernet além de entradas A/D, sáıdas D/A e Entrada/Sáıdas digitais (configurações

são bastante variáveis de acordo com marca e modelo).

A placa de desenvolvimento escolhida é a MCB2300 da Keil, Inc (Figura 2.4). A Placa

contêm um microcontrolador ARM 7 2378 NXP com clock de 12MHz. O sistema contem 2

portas CAN e uma Porta Ethernet.

2.7 O Sistema Operacional de Tempo Real RTX

O software de sistemas embarcados geralmente é desenvolvido com a utilização de inter-

rupções e de um looping rodando na função main do código fonte do programa. Configuram-se

timers, e criam-se interrupções para tratar o problema de sensoriamento, atuação, e comu-

nicação com outros dispositivos. Embora muitos programas ainda são implementados dessa

forma, para usufruir do avanço das técnicas de projeto e estruturação de software, utilizaremos

nesse trabalho um sistema operacional de tempo real no microcontrolador ARM.

O sistema operacional utilizado é o RTX. Com ele, blocos funcionais do projeto podem

ser desenvolvidos como processos que são escalonados pelo RTX. Cada processo pode ser

desenvolvido e testado isoladamente em relação a outros processos, tornando o trabalho de

implementação mais fácil. As vantagens de se usar um sistema operacional de tempo real no

microprocessador são uma abordagem orientada a objeto e o suporte a operações multitarefa.

O RTX consiste em um escalonador que suporta os modos Round-Robin, preemptivo, e

cooperativo para as tarefas. Além disso, o sistema operacional permite o gerenciamento de

tempo e memória, e comunicação entre diferentes tarefas com aux́ılio de triggering, semáforos,

Mutex, e um sistema de caixa de mensagens.

26

2.7.1 Tasks (Tarefas)

A elaboração de um programa em linguagem C t́ıpica é feita por meio de métodos que são

chamados para realizar determinada operação, e que retornam para a função que os chamou.

No sistema operacional de tempo real, a unidade básica de execução é a ”Tarefa”, ou task.

Uma task se parece bastante com um método, porém é necessário que ela tenha um looping

sem condição de parada. Dessa forma, cada task funciona como um pequeno programa que é

executado no sistema operacional. Dentro do mesmo, há um laço que é repetido durante um

tempo intederminado.

__task void task(void) {

for (;;) {

// Código

}

}

Um programa baseado no sistema operacional de tempo real possui então várias tasks,

que são controladas pelo escalonador do sistema. Num dado microprocessador, apenas uma

task pode estar sendo executada em um instante. Dessa forma, um processo sempre está em

um dos quatro estados básicos: Running, Ready, Waiting, ou Inactive. O RTX possui alguns

métodos para comunicação entre as tasks, sendo eles: eventos, samáforos, Mutex, e Mailbox.

2.7.2 Eventos

Cada task é criada com dezesseis flags de evento. Estas flags estão armazenadas no

Bloco de Controle de tasks. É posśıvel interromper momentaneamente a execução de uma

task colocando-a no modo Waiting até que um particular grupo de flags atinja uma condição

necessária. Quando isto ocorre, a task volta à condição Ready, e é escalonada pelo RTX.

É posśıvel definir um peŕıodo para que a task que está no modo Waiting retorne à condição

Ready.

2.7.3 Semáforos

O uso de semáforos permite sincronizar atividades entre duas ou mais tasks. Em termos

gerais, um semáforo contém um número de tokens. Quando uma task é executada, ela faz

um pedido ao Sistema Operacional para adquirir um token. Se o Sistema possui um ou mais

27

tokens dispońıveis, a task será executada e o número de tokens será decrementado em uma

unidade. Se a task realiza o pedido ao Sistema, mas não há tokens dispońıveis, ela entra na

condição Waiting até que um token esteja dispońıvel. Uma tarefa pode também devolver um

token para o Sistema.

Desse modo, semáforos são usados para controlar o acesso aos recursos do Sistema Op-

eracional. Antes que um processo tenha acesso aos recursos, ele precisa adquirir um token.

Se nenhum está dispońıvel, ele espera. Quando terminou de utilizar os recursos, ele devolve o

token.

Para exemplificar uma aplicação do uso de semáforos, pode-se considerar a sincronização

de duas tasks. Para isso, inicializaremos o Semáforo com um token, e executaremos as duas

tasks. Em certo ponto do programa, uma task pedirá o token, e continuará sua execução.

A segunda task também tentará obter o token, porém, este já estará ocupado. Entretanto,

a primeira task devolverá o token para o Sistema, e quando isto ocorrer, a segunda task irá

deixar o estado Waiting e entrará na condição Ready. Uma vez em Ready, o escalonador se

encarregará de rodar o processo.

Outras aplicações de Semáforos são: assegurar que determinada task execute antes de

outra; realizar o papel de multiplexador limitando o número de tasks que acessam recursos do

sistema; realizar o ”encontro”de tasks, ou seja, duas ou mais tarefas irão alcançar certo ponto

do programa, e irão esperar até que as outras também cheguem neste ponto.

2.7.4 Mutex

Mutex vem de Mutual Exclusion, ou seja, exclusão mútua. Esta ferramenta é uma versão

mais especializada dos Semáforos, pois possui o mesmo prinćıpio de funcionamento, exceto

por ser inicializado com apenas um token. Sua principal aplicação é controlar o acesso a um

recurso como um periférico. Dessa forma, o token de um Mutex é binário e limitado.

2.7.5 Mailbox

Os métodos de comunicação entre tasks apresentados até agora, visam apenas a sin-

cronização entre diferentes partes de códigos do programa. Porém, existem situações onde é

necessária a transferência de dados entre as tasks. Esta tarefa pode ser realizada por meio de

escrita e leitura em variáveis globais. Entretanto, tal implementação abre precedentes para er-

ros impreviśıveis que não garantem a integridade da informação. Por este motivo, é necessária

a formalização na comunicação asśıncrona entre tasks.

28

O Sistema Operacional de Tempo Real possui uma caixa de mensagens que possibilita a

transferência dos tipos de dados byte, inteiro e dados com largura de palavras, com compri-

mento fixo ou variável. UmMailbox consiste em um bloco de memória formatado como buffers

de mensagem, e um conjunto de ponteiros para cada buffer. Dessa forma, quando se envia

uma mensagem para o Mailbox, o slot correspondente à mensagem fica travado, podendo ser

liberado após a leitura dos dados enviados.

A configuração de um Mailbox é feito da seguinte forma: Declara-se o ponteiro de men-

sagem como um array de unsigned integers, onde se define o número de slots. Em seguida,

declara-se a estrutura que acomodará os dados a serem transferidos, geralmente utilizando

struct. Após definir o formato do slot de mensagem, deve-se reservar um bloco de memória

suficientemente largo para acomodar dezesseis slots de mensagem. Esses blocos de memória

são formatados com funções dispońıveis no Sistema Operacional.

Para realizar a transferência de mensagem entre duas tasks, cria-se um ponteiro do tipo

da estrutura da mensagem na task que envia a informação, e aloca-se o ponteiro no slot de

mensagem. Desse modo, preenche-se o slot de mensagem com os dados a serem transferidos

com aux́ılio do ponteiro. Com este procedimento, o Sistema trava o slot de mensagem. Para

receber o dado, cria-se um ponteiro do tipo da estrutura mensagem na task que recebe a

informação, e aloca-se o dado que está no slot para o ponteiro. Finalmente, o slot é liberado.

2.7.6 Travamento e Destravamento de Tasks

Num software de controle, é necessário assegurar que um trecho de código é executado

sem sofrer interrupções causadas pelo escalonador. Em uma aplicação baseada no Sistema

Operacional RTX, não se pode garantir que um determinado trecho de código será executado

ininterruptamente. Dessa forma, devem-se usar as funções de travamento e destravamento

dispońıveis no sistema, que permitem ou próıbem o escalonador de interferir na execução de

determinada task.

tsk_lock ();

trecho_de_código_crı́tico ();

tsk_unlock ();

29

2.7.7 Configuração

A configuração do Sistema Operacional de Tempo Real RTX é realizada pela edição do

arquivo RTXConfig.c espećıfico para o microcontrolador LPC2378. Este arquivo vem previa-

mente configurado pelo fabricante, e apresenta todas as opções necessárias para o usuário na

forma de um menu de seleção.

2.7.8 Opções de Escalonamento no RTX

O Sistema Operacional de Tempo Real RTX suporta escalonamento Preemptivo, Round-

Robin, e cooperativo. Entretanto, para a maioria das aplicações, utiliza-se um modelo misto

chamado escalonamento Round-Robin preemptivo.

2.7.8.1 Escalonamento Preemptivo

O escalonamento preemptivo é configurado desabilitando-se a opção Round-Robin, e

definindo-se uma prioridade diferente para cada task. Dessa forma, um processo será ex-

ecutado até que seja interrompido por outro de maior prioridade, ou pelo próprio Sistema

Operacional. Dessa forma, existe uma hierarquia na execução dos processos, com cada tarefa

consumindo tempos de execução variáveis.

2.7.8.2 Escalonamento Round-Robin

O escalonamento baseado em Round-Robin é configurado habilitando-se a opção Round-

Robin no arquivo RTXConfig.c, e definindo-se a mesma prioridade para cada task. Neste tipo

de escalonamento, cada task será executada durante o mesmo peŕıodo de tempo fixo, ou até

que seja interrompida pelo Sistema Operacional.

2.7.8.3 Escalonamento Cooperativo

O escalonamento cooperativo é configurado desabilitando-se a opção Round-Robin, e

definindo-se a mesma prioridade para todas as tasks. Dessa forma, cada task executará até que

seja interrompida pelo próprio sistema operacional, ou utilize uma função para explicitamente

passar para outra task.

30

3 METODOLOGIA

3.1 Concepção da Plataforma de Testes

A concepção da plataforma de testes é ilustrada na Figura 3.1. Observa-se a presença de

plataformas mecânicas a serem controladas, drivers de acionamento, microprocessadores TINI

atuando como bridge de rede, microcontroladores ARM7 que executam o sistema operacional

de tempo real RTX e implementam os controladores, e rede de comunicação CAN.

As plataformas mecânicas são constitúıdas de dois motores de corrente cont́ınua (DC)

juntamente com seus drivers de potência. Um deles é o motor que se deseja controlar em

malha fechada, e o segundo motor DC é utilizado como um gerador de distúrbios de torque.

O motor principal está acoplado a sensores de torque (embutido no driver) e posição

(encoder). O driver de acionamento possui sáıdas que permitem o acesso da velocidade de

rotação do encoder acoplado aos motores. Os sinais dos sensores se conectam a um micro-

controlador TINI DS80C400 (Maxim-Dallas Semiconductor). O objetivo da utilização desse

microcontrolador é o transporte das informações dos sensores para uma rede de comunicação

CAN. Da mesma forma, mensagens CAN do sinal de atuação são convertidos pelo TINI para

o protocolo SPI de forma a levar as informações ao driver.

As tarefas que implementam os controladores são executadas no microcontrolador ARM7

que possui o sistema operacional de tempo real RTX nele configurado.

Para os experimentos de sistemas de controle distribúıdo, os módulos poderão ser in-

terconectados em rede. Dessa forma, podemos conectar várias plataformas de teste numa

rede de comunicação e distribuir os processos adequadamente em uma CPU ou várias CPUs

simultaneamente.

31

Figura 3.1: Concepção da plataforma de testes

3.1.1 A Plataforma Mecânica

Quatro unidades da plataforma mecânica foram inteiramente projetadas e constrúıdas. A

figura 3.7 mostra uma plataforma mecânica em estágio final de construção. As figuras 3.2

e 3.3 apresentam os modelos em software CAD do kit. Foram utilizados materiais de baixo

custo como acŕılico para a base e aluḿınio para as peças. A tabela da figura 3.9 apresenta os

custos relacionados à aquisição de materiais para a construção do kit.

Os motores utilizados são provenientes de scanners fabricados pela Canon, modelo FN38,

e seus gráficos de torque em função da velocidade são apresentados na figura 3.10.

Os mancais utilizados no projeto são fabricados pela Igus, e são do modelo KSTM-10

(figura 3.4).

A polias são fabricadas em aluḿınio pela Schneider, e proporcionam uma relação de:

DprimitivoMaior

DprimitivoMenor

=
28.65

16.23

conforme (figura 3.5).

O encoder série 40 é fabricado pela Hohner e possui uma resolução de 1024 pulsos por

32

Figura 3.2: Modelo em três dimensões do kit mecânico.

revolução. Sua construção é feita em aluḿınio e possui eixo com diâmetro de 6mm (figura

3.6).

3.1.2 A Plataforma Elétrica

A plataforma elétrica (figura 3.11) foi adquirida pelo Laboratório de Sistemas Embarcados

do PMR (Departamento de Engenharia Mecatrônica), e consiste na fonte de alimentação,

drivers de acionamento, microcontroladores TINI e ARM7.

O driver de acionamento (figura 3.12) foi adquirido separadamente, é do modelo PN420,

e pode ser utilizado em dois modos de operação: Analógico e Digital. O modo de operação

é selecionado pelo jumper JP1, onde a presença do jumper configura o modo analógico, e a

sua ausência aciona o modo digital. Há um led vermelho que pisca com uma frequência maior

quando o driver está configurado para operar no modo analógico.

33

Figura 3.3: Modelo renderizado em três dimensões do kit mecânico.

Figura 3.4: Mancal KSTM-10 fabricado pela Igus.

34

Figura 3.5: Polias modelos 173M9 e 303M9 fabricados pela Schneider.

Figura 3.6: Encoder série 40, fabricado pela Hohner.

35

Figura 3.7: Plataforma de testes.

36

Figura 3.8: Conjunto de quatro plataformas de testes.

Figura 3.9: Tabela de custos relacionados à matéria prima.

37

Figura 3.10: Desenhos e curva do motor Canon FN38 utilizado no projeto.

38

Figura 3.11: Plataforma Elétrica com fonte, drivers de acionamento, e microprocessadores
TINI.

3.1.2.1 Driver de Acionamento: Modo Analógico

O modo analógico permite que o usuário entre com uma tensão correspondente ao sinal

PWM e à direção de rotação no par de pinos CN6. O sinal deve estar dentro dos limites de

tensão -2,5v e +2,5, sendo que o sinal determina a direção de rotação.

A velocidade de rotação do encoder, em RPM, é acessada diretamente no par de pinos

CN5. Semelhantemente ao pino CN6, a tensão proporcional à rotação do eixo do encoder

pode variar entre -2,5v e +2,5v.

3.1.2.2 Driver de Acionamento: Modo Digital

O modo digital se comunica com o meio externo por meio do protocolo SPI. Nesse caso,

utiliza-se o par de pinos CN2 e CN8 pra entrada dos sinais de clock, slave select, master

in slave out, e master out slave in. O funcionamento do protocolo SPI é apresentado num

caṕıtulo dedicado.

3.2 Modelagem e Identificação da Planta da Plataforma

3.2.1 Modelagem do Sistema

A plataforma a ser modelada consiste em um amplificador de tensão, um motor C.C., um

sistema de engrenagens, uma carga inercial, e um encoder óptico. A modelagem permite que

uma função de transferência entre a tensão de entrada eg(t) e a velocidade angular ωENC(t)

no eixo do encoder seja estabelecida.

As funções de transferência do amplificador e do encoder são:

39

Figura 3.12: Driver modelo PN420 projetado pela Peres e Noris Automação Ltda.

GAMP (s) = K1 (3.1)

GENC(s) = KENC (3.2)

Sabemos que o motor utilizado será controlado por armadura, e possui corrente de campo

constante. O torque do motor T é proporcional à corrente de armadura ia.Dessa forma:

T = K2 · ia (3.3)

Sabe-se que a tensão induzida eb é diretamente proporcional à velocidade angular dθ
dt
:

eb = K3 · dθ
dt

= K3 · ω (3.4)

Onde K2 é a constante de torque do motor, K3 é a constante de força contra-eletromotriz

do motor, eb é a tensão induzida, e θ é o deslocamento angular do eixo de sáıda do motor.

A velocidade de rotação w do motor é proporcional à tensão de armadura ea. A equação

diferencial do circuito de armadura é dada por:

La · dia
dt

+Ra · ia + eb = ea (3.5)

onde La é a indutância da armadura e Ra é a resistência da armadura.

40

A equação de equiĺıbrio de torque no eixo do motor é dada por:

J0 · d
2θ

dt2
+ b0 · dθ

dt
= T = K2 · ia (3.6)

ou, em termos de ω:

J0 · dω
dt

+ b0 · ω = T = K2 · ia (3.7)

onde J0 e b0 são a inércia e o atrito viscoso do eixo do motor, das massas inerciais, e das

engrenagens.

Finalmente, com o aux́ılio das equações 3.1, 3.2, 3.4, 3.5, e 3.7, determina-se a função de

transferência entre a sáıda correspondente à velocidade angular do eixo do encoder ωENC , e

a entrada do gerador de funções eg:

Gω(s) =
K1 ·K2 ·KENC

(La · s+Ra) · (J0 · s+ b0) +K2 ·K3

(3.8)

Pode-se desprezar a indutância da armadura La, de forma a representar a equação 3.8

como uma função de transferência de primeira ordem:

Gω(s) =
K1 ·K2 ·KENC

Ra · (J0 · s+ b0) +K2 ·K3

(3.9)

Uma função desse tipo pode ser apresentada como:

Gω(s) =
Kω

T · s+ 1
(3.10)

Desse modo, podemos modificar a equação 3.9 para a forma da equação 3.10, onde:

Kω =
K2 ·KENC

Ra · b0 +K2 ·K3

(3.11)

e,

T =
Ra · J0

Ra · b0 +K2 ·K3

(3.12)

41

Figura 3.13: Esquema para identificação do sistema.

Figura 3.14: Placa de aquisição de dados PCI-6024E da National Instruments

3.2.2 Identificação do Sistema

O projeto do controlador a ser utilizado necessita primeiramente de um modelo da planta

das plataformas constrúıdas. Neste caṕıtulo, será abordado o método de identificação utilizado.

Um sistema de aquisição de dados é constitúıdo de computador pessoal, placa de aquisição de

sinais, condicionador de sinais, sensores e atuadores, e software de aquisição e tratamento de

sinais.

O computador pessoal utilizado possui um AMD Athlon XP 1700+ 1.47Ghz e sistema

operacional Windows XP. Dessa forma, é posśıvel cumprir a função de aquisição dos dados

em uma taxa de 250 escaneamentos por segundo.

A placa de aquisição de dados dispońıvel no laboratório é a PCI-6024E (figura 3.14),

fabricada pela National Instruments, e possui dezesseis canais de entradas analógicas, dois

canais de sáıdas analógicas, oito pinos de entrada e sáıda digital, e conector externo de 68

pinos (figura 3.15).

Para a aquisição dos sinais foi utilizado o software LabView (Laboratory Virtual Instru-

ment Engineering Workbench) com um Instrumento Virtual (VI) dispońıvel no Laboratório de

42

Figura 3.15: Conector externo de 68 pinos da placa de aquisição.

Sistemas Embarcados. O tratamento dos dados adquiridos foi feito com o software MATLAB.

A montagem feita é esquematizada na figura 3.13, e consiste em ligar um gerador de

funções com uma tensão fixa correspondente ao sinal de controle na entrada analógica do

driver de acionamento. A sáıda do driver é uma tensão proporcional à velocidade de rotação

no encoder, em RPM. Um canal da placa de aquisição é afixado na entrada do driver junto

ao gerador de funções, e outro canal é afixado na sáıda do driver.

O gerador de funções é configurado para gerar uma onda quadrada entre os ńıveis de tensão

0 e 2.5v com um peŕıodo suficientemente grande para o sistema entrar em regime estacionário.

Os dados obtidos pelo software Labview compreendem desde o instante de tempo em que o

degrau de entrada é aplicado até uma região em que o sinal já entrou em regime estacionário.

O modelo do sistema obtido na seção anterior é de primeira ordem. Dessa forma, utiliza-

se o software MATLAB para traçar uma curva exponencial que aproxime os dados obtido e

permita a identificação dos parâmetros Kω e T da função de transferência 3.10.

3.3 Redes de comunicação

3.3.1 Configuração da rede CAN

3.3.1.1 O Protocolo CAN aplicado no TINI

Para configurar a rede CAN no TINI, foi utilizada uma biblioteca disponibilizada pela

própria fabricante. Programou-se usando a versão em linguagem C, especificamente para o

ambiente de desenvolvimento μVision. A implementação é feita por interrupção, permitindo

que o CPU processe outras tarefas enquanto se comunica por esse protocolo.

43

O código abaixo se refere à função de inicialização da rede CAN. Nela é feita a escolha da

taxa de transmissão de mensagem, no caso 50Kbps. Posteriormente, determina-se o tipo de

mensagem como sendo standard no lugar de extended, pelo fato de que não há necessidade

de envio de uma grande quantidade de dados por mensagem. Configura-se também o filtro

de IDs para a recepção de frames de um determinado dispositivo.

int startupCAN()

{

...

//escolha do baud-rate

if ((retval = can_settseg1(CAN_CONTROLLER,CAN_TSEG1)) != 0)

return retval;

if ((retval = can_settseg2(CAN_CONTROLLER,CAN_TSEG2)) != 0)

return retval;

if ((retval = can_setbaudrateprescaler(CAN_CONTROLLER,CAN_PRESCALER))

!= 0) return retval;

if ((retval = can_setsynchronizationjumpwidth(CAN_CONTROLLER,CAN_SJW))

!= 0) return retval;

if ((retval = can_setrxwriteoverenable(CAN_CONTROLLER,1)) != 0)

return retval; //permite overwriting quando o buffer de mensagens esta

cheio

junk32 = 0x00;

if ((retval = can_set11bitglobalidmask(CAN_CONTROLLER,&junk32)) != 0)

return retval;

config.ExtendedID = FALSE; //utilizaç~ao de standard frame

config.ID = CAN_RECEIVE_ID; //determinaç~ao de ID para recepç~ao de

mensagem

config.MemeEnable = TRUE;

config.MdmeEnable = FALSE;

...

//inı́cio de comunicaç~ao

44

if ((retval = can_enablecontroller(CAN_CONTROLLER)) != 0)

return retval;

return 0;

}

Para o envio de mensagens é utilizada a função can sendframe, cujas entradas são o

número do controlador CAN e um structure do tipo CanFrame, o qual representa a mensagem

a ser transmitida. Esse, como pode ser observado no código abaixo, possui parâmetros como

o ID e o vetor de bytes para os dados.

typedef struct

{

boolean RemoteFrameRequest;

boolean ExtendedID;

uint32_t ID;

uint8_t Length; //tamanho dos dados

char Data[8]; //dados

} CanFrame;

O valor numérico do sinal de atuação e de feedback é alocado em uma variável do tipo

float, de 32 bits. No entanto, esse último deve ser convertido em um vetor de 4 bytes para

ser associado ao vetor de dados no CanFrame. Como solução foi utilizado uma estrutura do

tipo union, em que aloca-se 2 variáveis em mesmas posições de memória.

Considerando o código a seguir, uma vez que uma das variáveis é alocada, automatica-

mente a outra também será, podendo ser acessada para uso. Dessa forma converte-se o float

em um vetor de bytes para envio e o contrário para recepção de mensagens.

typedef union{

float f;

unsigned char c[4];

}CanframeData;

45

3.3.1.2 O Protocolo CAN aplicado no ARM7

O sistema operacional de tempo real RTX possui um driver CAN que permite uma im-

plementação de uma rede de forma rápida e fácil, e com uma enorme compatibilidade com

outros dispositivos CAN. O sistema RTX possui bibliotecas com diversas funções que auxiliam

o programador.

Para a configuração do controlador CAN, foi escrita a seguinte função:

void startup_CAN(){

//Seta o baudrate para o controlador CAN número 1 em 50k

CAN_init (1, 50000);

// CAN_rx_object ativa o recebimento de mensagens com determinado ID.

CAN_rx_object (1, 2, ID1_IN, DATA_TYPE | STANDARD_TYPE);

CAN_rx_object (1, 2, ID2_IN, DATA_TYPE | STANDARD_TYPE);

CAN_rx_object (1, 2, ID3_IN, DATA_TYPE | STANDARD_TYPE);

CAN_rx_object (1, 2, ID4_IN, DATA_TYPE | STANDARD_TYPE);

CAN_rx_object (1, 2, ID5_IN, DATA_TYPE | STANDARD_TYPE);

CAN_rx_object (1, 2, ID6_IN, DATA_TYPE | STANDARD_TYPE);

//Inicia o controlador CAN especificado, e o introduz na rede CAN

CAN_start (1);

}

A tarefa de receber mensagens CAN merece uma atenção especial, pois foi desenvolvida

em uma task independente das correspondentes aos controladores. Dessa forma, utiliza-se

semáforos para acessar as variáveis globais que acodomodam o conteúdo das mensagens rece-

bidas.

De forma semelhante ao caso apresentado na seção anterior, foi utilizada a estrutura Union

para permutar entre um dado float (32 bits), e um vetor de 4 bytes (4 x 8 bits).

A função escrita para recebimento de mensagens CAN é na forma:

if(CAN_receive (1, &msg_rece, 0x0000) == CAN_OK){

in_id = msg_rece.id;

46

if(in_id == ID1_IN){

if(OS_R_TMO != os_mut_wait(mutex1,0)){

in1.c[0] = msg_rece.data[3];

in1.c[1] = msg_rece.data[2];

in1.c[2] = msg_rece.data[1];

in1.c[3] = msg_rece.data[0];

os_mut_release(mutex1);

}

situation1 = 1;

}

//if(in_id ==){

// De forma semelhante para outros ID’s

//}

}

O envio de mensagens para a rede é feita pelo seguinte trecho de código:

(...)

msg_send1.data[0] = U.c[3];

msg_send1.data[1] = U.c[2];

msg_send1.data[2] = U.c[1];

msg_send1.data[3] = U.c[0];

CAN_send (1, &msg_send1, 0x0000);

3.3.1.3 Conexões Elétricas

O cabo de conexão CAN é um par trançado com resistores terminadores de 120Ω. No

bus CAN, o nivel lógico zero é representado pela máxima diferença de voltagem chamada de

”dominante”, e o ńıvel lógico zero é representado pelo idle state chamado de ”recessivo”. A

figura 3.16 ilustra a ponta do bus CAN com o resistor terminador.

3.3.2 Comunicação SPI

Tanto a biblioteca em Java como a em C para o SPI são importações de uma implemen-

tação nativa em assembly. Existe uma função para inicialização e outra para o envio e leitura

47

Figura 3.16: Ponta do cabo CAN com resistor terminador).

simltânea, cuja declaração pode ser vista a seguir. A vantagem é que, por ser implementada

em baixo ńıvel, atinge-se uma excelente precisão nas constantes de tempo de envio. Perde-se,

porém, versatilidade com relação às diversas constantes de tempo que o protocolo poderia

assumir.

void spi_xmit (

unsigned char * dataptr,

int length,

unsigned char delay,

unsigned char options

)

Por problemas que serão citadas depois, como alternativa à biblioteca original, foi feito

uma implementação do SPI em linguagem C utilizando interrupção. As constantes de tempo

estavam imprecisas devido à problemas na periodicidade das interrupções, assim posterior-

mente foi feito uma customização da biblioteca nativa a partir da edição do programa em

assembly.

3.4 Controle do Sistema

Nesse trabalho são avaliados três algoritmos de controle, sendo eles:

1. Controlador PI

2. Controlador PI com Compensação

3. Controlador PI dividido em Subtasks

48

Figura 3.17: Looping de controle utilizado.

3.4.1 Controlador PI

Considerando-se a função de transferência de primeira ordem obtida na seção sobre mod-

elagem e identificação de sistemas, utilizaremos controladores do tipo proporcional-integral

(PI) para o controle das plantas, pois se pode demonstrar que controladores desse tipo são

suficientes para controlar sistemas onde a dinâmica predominante é de primeira ordem [6].

Gc = Kp +
Ki

s

O controlador é projetado no doḿınio do tempo cont́ınuo e é calibrado com o aux́ılio do

software MATLAB. Após isso, é discretizado utilizando-se o método de aproximação de Tustin,

onde:

s =
2 · (z − 1)

Ta · (z + 1)

A equação de diferença obtida e implementada no microprocessador ARM7 é:

u(k) = u(k − 1) + (KP +
Ki · Ta

2
) · e(k) + (

Ki · Ta

2
−KP) · e(k − 1) (3.13)

Onde KP , Ki, Ta, u(K) e e(K) são, respectivamente: o ganho da planta, o ganho da

porção integral do controlador, o tempo de amostragem, o sinal de controle num instante K,

e o sinal de erro num instante K.

3.4.2 Controlador PI com Compensação

A introdução de indeterminismos temporais, sobretudo a variação do peŕıodo de amostragem,

fazem com que o desempenho de um controlador seja bastante reduzido. A figura 3.18 mostra

em linha tracejada o gráfico de Bode para o caso em que um peŕıodo de amostragem é menor

49

Figura 3.18: Diagrama de Bode ilustrando efeito de atrasos no peŕıodo de amostragem.

do que o ideal, enquanto que o de linha pontilhada apresenta o mesmo gráfico para um peŕıodo

maior do que o estabelecido. A linha cont́ınua corresponde ao traçado do gráfico para o tempo

de amostragem ideal. Os três traçados anteriores possuem latência de entrada e sáıda con-

stantes e diferente de zero. A linha traço-ponto mostra o caso ideal onde não há variação

no peŕıodo de amostragem, e não há latência de entrada e sáıda. Com base nesse gráfico,

percebe-se a introdução de oscilações devido à variações no tempo de amostragem.

O controlador com compensação de atraso implementado foi baseado no controlador PI ap-

resentado na seção anterior. A idéia básica é utilizar um dos timers do microprocessador ARM

para efetuar timestamps. Subtraindo-se dois valores de tempo consecutivos no recebimento

de mensagens CAN, utiliza-se esse peŕıodo de amostragem para recalcular os coeficientes A e

B da equação de diferenças apresentada na figura 3.19.

50

Figura 3.19: Coeficientes da equação de diferenças do controlador compensado.

3.4.3 Controlador PI dividido em Subtasks

Para a implementação do controlador PI dividido em Subtasks, o algoritmo do controlador

PI comum é utilizado. A task de controle é dividida em duas partes: A primeira possui maior

prioridade, e basicamente calcula o sinal de controle, com base no erro do sistema. A segunda

parte envia a mensagem CAN.

3.5 Dificuldades encontradas

Mesmo após tentativas de estabelecer a comunicação por SPI entre o microcontrolador

TINI e o driver de acionamento, isso não foi posśıvel devido à falta de confiabilidade na

transmissão de mensagens principalmente por existirem interferências de rúıdos. Além disso, a

maior velocidade que a conexão possivelmente proporcionaria não era suficientemente rápida

para que fosse efetuado um controle das plataformas mecãnicas.

Planejou-se como solução de longo prazo a utilização do modo analógico do driver, e a

introdução de dispositivos externos, conversores D/A e A/D. Porém, para isso seria necessário

a aquisição de conversores capazes de se comunicar de forma serial, algo que impossibilitou a

realização dessa alternativa.

Como solução de curto prazo, simulou-se o conjunto driver-kit-mecânico diretamente no

microcontrolador TINI, para dar continuidade ao projeto.

3.6 Aquisição e Tratamento de Dados

Após a fase de implementação do software, foi feita a aquisição dos dados que trafegavam

pela rede CAN para sua posterior análise. Para isso, a placa PCAN PCI (figura 3.20) da

Peak System Technik foi utilizada em conjunto com o software PCAN Explorer 4 (figura

3.21). Este software permite o armazenamento de todas mensagens completas que trafegam

pela rede, com seus respectivos timestamps. Desse modo, é posśıvel elaborar um histograma

51

Figura 3.20: Placa Peak Pcan Pci utilizada para monitorar a rede CAN.

Figura 3.21: Software Pcan Explorer 4 utilizado para aquisição dos dados que trafegam na
rede CAN.

com a distribuição dos tempos de amostragem. Além disso, pode-se utilizar os dados de

uma mensagem para traçar gráficos do sinal de atuação e do sinal de sáıda de cada sistema

planta-controlador inserido na rede CAN.

Para o tratamento dos dados obtidos pelos softwares de aquisição, foi desenvolvido um

aplicativo em JAVA capaz de manipular o arquivo de sáıda do PCAN Explorer, de forma a

tornar fácil o seu posterior estudo.

O arquivo de sáıda do PCAN Explorer destina uma linha para cada mensagem que trafega

na rede. Cada mensagem é então caracterizada pelo seu ID de destino, pelos seus dados (a

informação proprimente dita, na forma de quatro bytes em hexadecimal), e seu timestamp.

A aplicação em JAVA gera arquivos independentes para cada conjunto de mensagens com o

mesmo ID em comum. Os dados da mensagem na forma de quatro bytes são interpretados, e

o aplicativo salva no arquivo gerado o valor do tipo ponto flutuante correspondente ao vetor

de bytes.

Após a fase de organização dos dados aquisitação, uma rotina em Matlab foi implementada

52

para traçar os gráficos de sinal de sáıda e de atuação para cada conjunto planta-controlador,

e para criar o histograma de variação do tempo de amostragem.

Para a comparação de diferentes algoritmos de controle, além da inspeção visual dos

gráficos traçados, uma análise matemática também foi levada em consideração.

e2 =

∫ Tfinal

0 (yideal(t)− ysimulado(t))
2 dt

Tfinal

O erro quadrático médio acima é calculado para cada algoritmo de controle. O vetor de

dados aquisitados é comparado a um vetor do sinal de sáıda ideal, simulado no matlab.

3.7 Simulação de Sistema Distribúıdo

A partir da modelagem da planta real como um sistema de primera ordem, obteve-se o

modelo discretizado pelo método de Tustin. Esse, por sua vez, pode ser representado pela

equação de diferenças apresentada a seguir, a qual é utilizada no algoritmo de simulação do

TINI.

u(k) =
A · u(k) + B · u(k − 1)− C · y(k − 1)

Ta + 2 · T
Para se obter uma melhor aproximação com relação à planta real, foi feito uma compen-

sação dos parâmetros da equação de forma semelhante ao que foi feito no controlador PI.

Uma interrupção foi configurada especificamente para fins de temporização, sendo utilizada

para medir o peŕıodo de amostragem real, isto é, o intervalo de tempo entre duas mensagens

consecutivas recebidas do controlador. Dessa forma, a planta permite simular os efeitos cau-

sados pela variação do peŕıodo de atuação, mostrando-se senśıvel aos posśıveis atrasos que

surgem no sistema.

Para cada mensagem de controle recebido pela rede CAN, o microcontrolador TINI calcula

a sáıda conforme equação acima e logo depois retorna a mensagem de feedback pela rede. O

cálculo relativo à simulação da planta é feita pela função a seguir.

float simulatePlant(){

oldcount = count;

count = 0;

53

Figura 3.22: Esquema da simulação do sitema distribúıdo.

stime = (float)oldcount/19200.0; //cálculo do perı́odo para compensaç~ao

pA = PLANT_K*stime; //atualizaç~ao dos parâmetros

pB = pA;

resetwdtimer(); //reseta o timer do Watchdog

pC = stime - 2*PLANT_T;

y = (pA*u + pB*u_1 - pC*y_1)/(stime + 2*PLANT_T); //eq de diferenças

resetwdtimer(); //reseta o timer do Watchdog

y_1 = y; //armazena os valores atuais das variáveis

u_1 = u;

return y;

}

A simulação é feita em cinco microcontroladores, quatro TINIs e um ARM7. Cada um

possui uma planta ligeiramente diferente, com controladores espećıficos. A configuração final

pode ser vista na figura 3.22

54

Figura 3.23: Simulação do Sistema Distribúıdo.

55

4 RESULTADOS

4.1 Plataforma Mecânica

O kit mecânico foi inteiramente projetado, pois um produto comercial semelhante possui

custo muito alto. Foram feitos desenhos em programas de CAD, e o desenvolvimento foi

documentado.

A construção do protótipo da plataforma mecânica foi feita utilizando-se materiais de

fácil aquisição, como acŕılico e aluḿınio. Para a fabricação das peças, foram utilizados os

equipamentos da oficina do Departamento de Engenharia Mecatrônica da USP. O kit foi

testado no Laboratório de Sistemas Embarcados.

Fotos das plataformas mecânicas podem ser vistas na figura 3.8.

4.2 Bridge de Rede

Foi implementada a rede CAN no microcontrolador TINI, bem como foi configurada a

comunicação SPI, o que permitiria o uso do dispositivo como um bridge de rede. Porém, pelas

dificuldades abordadas nas seções anteriores, a comunicação SPI não foi utilizada, e o driver

de acionamento e o kit mecânico foram simulados no TINI.

4.3 Software de Controle

Foram desenvolvidos três tipos de algoritmos de controle para sistemas de primeira ordem.

O primeiro consiste num controlador proporcional-integral comum. No segundo, os coeficientes

da equação de diferença são recalculados conforme o último tempo de amostragem medido

pelo sistema de tempo real no ARM7. O último, por sua vez, é dividido em subtasks, de forma

a priorizar a periocididade na amostragem e cálculo do sinal de controle, enquanto que o envio

do mesmo para a rede CAN possui uma relevância menor.

56

4.4 Simulação do Sistema Distribúıdo

Foi desenvolvido um main loop em linguagem C para o TINI e para o ARM o qual recebe

a mensagem de controle, simula a planta real, e retorna a resposta da mesma pela rede. Foi

feito uma compensação no peŕıodo de amostragem para aprimorar a aproximação do modelo

com relação à planta real.

4.5 Análise dos Controladores

O conjunto de aquisição de dados permitiu a análise dos dados que trafegaram pela rede

CAN. Com base nessas informações, pôde-se avaliar o desempenho dos três algoritmos de

controle.

A planta do caso estudado nas análises seguintes, possui ganho igual a 1.8 e constante

de tempo de 1.8 segundos. O peŕıodo de amostragem utilizado foi de 8ms. O controlador

projetado no doḿınio cont́ınuo possui parâmetro proporcional igual a 0.262884, e tempo de

integração aproximadamente igual a 0.2s.

4.5.1 Controlador PI

A figura 4.1 apresenta o gráfico de sinal de sáıda e de atuação do controlador simples da

planta simulada no microcontrolador ARM7, quando a rede de comunicação era compartilhada

por cinco nós. A linha cont́ınua represena os sinais ideais simulados em MATLAB, enquanto

que a linha tracejada apresenta os dados experimentais.

Observa-se claramente que o congestionamento da rede CAN prejudica o desempenho do

controlador, a ponto de tornar o sistema instável. Esse efeito ocorre devido principalmente à

perda de mensagens, o que introduz atrasos consideráveis no sinal de controle.

O erro quadrático médio calculado chegou à ordem de 108 para esse caso da figura apresen-

tada. Esse valor alto é explicado pela crescente amplitude de oscilação devido à instabilidade

do sistema.

4.5.2 Controlador PI com Compensação

O controlador PI compensado apresentou um melhor desempenho com relação ao caso

anterior. Os gráficos (figura 4.2) mostram que o sistema convergiu, porém com considerável

57

Figura 4.1: Controlador PI: Sinal de sáıda e de atuação para um conjunto
planta-controlador

oscilação em relação à curva teórica.

O erro quadrático encontrado foi de 6.1592 para o exemplo da figura 4.2.

4.5.3 Controlador PI dividido em Subtasks

O controlador PI dividido em subtasks mostrou um desempenho melhor do que os dois

casos acima. Com base nos gráficos traçados (figura 4.3), o desempenho é semelhante ao

caso do controlador PI com compensação. Porém, o erro quadrático médio mostra que esse

controlador obteve melhores resultados.

O valor do erro quadrático médio foi de 1.1524.

4.6 Análise da Variação do Tempo de Amostragem

Foram coletados os intervalos entre mensagens de um mesmo conjunto planta-controlador,

sendo posśıvel criar histogramas e comparar a distribuição dos tempos de amostragem para

diferentes cargas sobre a rede CAN.

O conjunto planta-controlador do caso estudado possui ganho igual a 1.8 e constante de

tempo de 1.8 segundos. O peŕıodo de amostragem utilizado foi de 8ms.

Com base nos histogramas, pode-se constatar a enorme amplitude na variação do peŕıodo

de amostragem. Houve casos onde o atraso foi maior do que um peŕıodo de amostragem, o

58

Figura 4.2: Controlador PI com compensação: Sinal de sáıda e de atuação para um
conjunto planta-controlador

Figura 4.3: Controlador PI divido em Subtasks: Sinal de sáıda e de atuação para um
conjunto planta-controlador

59

Figura 4.4: Histogramas para os Tempos de Amostragem

60

que é apresentado no gráfico como incidências com valores menores do que 8ms (Peŕıodo de

amostragem ideal).

Os resultados obtidos foram o projeto, construção, e teste da plataforma mecânica, de-

senvolvimento do software que implementa o protocolo CAN, e o desenvolvimento do software

de controle.

O kit mecânico foi inteiramente projetado, pois um produto comercial semelhante possui

custo muito alto. Foram feitos desenhos em programas de CAD, e o desenvolvimento foi

documentado.

A construção do protótipo da plataforma mecânica foi feita utilizando-se materiais de

fácil aquisição, como acŕılico e aluḿınio. Para a fabricação das peças, foram utilizados os

equipamentos da oficina do Departamento de Engenharia Mecatrônica da USP. O kit foi

testado no Laboratório de Sistemas Embarcados.

O software que implementa o protocolo CAN foi desenvolvido, permitindo a integração

dos microprocessadores ARM 7 e TINI na rede de comunicação.

O algoritmo de escalonamento implementado utilizado o sistema operacional de tempo

real RTX.

61

5 CONCLUSÃO

O projeto de Sistemas de Controle Distribúıdos de Tempo Real são, essencialmente, um

problema de co-projeto. Foi posśıvel por meio dos resultados constatar a existência de distúr-

bios de rede. Para isso, foi desenvolvida uma rede com números de nós variáveis representando

modelos de plantas, de forma a congestionar gradativamente a mesma. Com isso, obteve-se

uma relação entre a utilização da banda de rede e o desempenho do controlador, o qual é

prejudicado principalmente pelos atrasos ou perdas de mensagens. Pode-se afirmar que o

bom aproveitamento de um controlador depende do peŕıodo de amostragem e da variação

da latência de entrada e sáıda. Além disso, analisou-se três tipos de algoritmos de controle,

cada um com suas respectivas peculiaridades. Baseado nos dados experimentais, recomenda-

se que o controlador leve em conta os atrasos no cálculo de seus parâmetros, ajustando como

consequência o sinal de atuação. Considerando isso, é posśıvel ressaltar a importância do

co-projeto, ou seja, da necessidade de se levar em conta aspectos de hardware e software no

projeto de um controlador, para que este tenha um aproveitamento melhor dos recursos do

sistema embarcado.

62

6 BIBLIOGRAFIA

[1] Wakamoto, E. Sistemas de controle distribúıdos em redes de comunicação, São Paulo,

2009.

[2] Liu, C.L. and Layland, J.W., Scheduling algorithms for multi-programming in a hard

real-time environment, Journal of the ACM, Vol 20, No. 1, pp. 40–61, 1973.

[3] Cervin, A. Integrated control and real-time scheduling, Ph.D. Thesis, Lund Institute of

Technology, 2003.

[4] Pazul, K. Controller Area Network (CAN) Basics, Microchip Technology Inc., 1999.

[5] ARM, Ltd. Getting Started: Building Applications with RL-ARM,ARM Ltd e ARM

Germany GmbH, 2009.

[6] Ogata, K. Modern Control Engineering, Prentice Hall, 2001.

[7] Andersson, M., Henriksson, D., Cervin, A. Truetime 1.5 Reference Manual, Lund

Institute of Technology, 2007.

[8] Andersson, M., Henriksson, D., Cervin, A.,Årzén,K.E. Truetime: Simulation of Net-

worked Computer Control Systems, Lund Institute of Technology, 2006.

63

7 APÊNDICE

7.1 Uma ferramenta de análise

7.1.1 A ferramenta TrueTime

O não determinismo temporal introduzido pela rede de comunicação acarreta uma perda

de desempenho significativa no sistema de controle. Nesse contexto, a ferramenta True-

Time é utilizada nesse trabalho para analisar os efeitos causados pelos atrasos no controlador.

Para uma descrição completa da ferramenta, consultar [8], [9]. TrueTime está dispońıvel em

”http://www.control.lth.se/user/dan/truetime”.

A ferramenta em questão permite simular os aspectos temporais de sistemas de tempo

real e de redes com ou sem fio dentro do ambiente Simulink, junto com a dinâmica em tempo

cont́ınuo da planta a ser controlada. A abordagem permite uma simulação com um riqueza

de detalhes próxima ao sistema real.

O programa consiste em uma biblioteca de blocos com as funções de representar o kernel,

uma rede convencional, uma rede wireless, e a bateria. O bloco kernel executa processos pré-

definidos pelo usuário, e lida com interrupções causadas por algoritmos de controle, processos

de entrada e sáıda, interface de rede, além de possuir conversores A/D e D/A. A poĺıtica de

escalonamento utilizada pelo kernel é definida pelo usuário. Para simular o sistema de controle

em tempo real, os blocos da biblioteca TrueTime são conectados com os convencionais blocos

do Simulink, sendo estes últimos utilizados para construir graficamente o algoritmo de controle.

Os blocos de rede distribuem as mensagens entre os nós de acordo com o modelo de

rede escolhido. O TrueTime 1.5 suporta seis dos principais protocolos de controle acesso:

(CSMA/CD (Ethernet), switched Ethernet, CSMA/CA (CAN), token-ring, FDMA, e TDMA).

O bloco de rede sem fio proporciona a simulação dos padrões IEEE 802.11 WLAN e IEEE

802.15.4 ZigBee. Somente as interações mais relevantes para o comportamento do sistema

em relação aos atrasos que são modelados. Algumas delas são: atrasos de pré e pós pro-

cessamento, mecanismos de detecção de colisão e de prevenção de ocorrência de colisão, e a

64

Figura 7.1: Biblioteca de blocos do TrueTime

Figura 7.2: Controlador PI implementado em Simulink-Matlab

probabilidade de se perder pacotes.

Os códigos das funções para os processos ou comandos de inicialização podem ser feitos

em C++ ou em linguagem MATLAB.

7.1.1.1 Exemplo

Para uma melhor apresentação da ferramenta TrueTime, foi realizada uma simulação do

controle de dois motores de corrente cont́ınua que possuem a função de transferência a seguir:

G(S) =
1

0.5s+ 1
(7.1)

O controlador utilizado é um PI (Proporcional Integral) com Kp = 2.8 e Ki = 0.07

conforme a figura 7.2. Monta-se o esquema mostrado na figura 7.3 utilizando um bloco kernel

65

Figura 7.3: Esquema utilizando biblioteca TrueTime.

que é inicializado pelo arquivo doismotoresTF.m. Este arquivo define o número de entradas e

sáıdas do bloco kernel, bem como a prioridade e peŕıodo de cada processo. Além disso, permite

escolher a estratégia de escalonamento e os controladores a serem utilizados. Destaca-se o

fato de que foram utilizados controladores diferentes para cada uma das tasks, permitindo-se

o uso de tempos de execução diferentes, sendo 3ms para a primeira, e 2ms para a segunda

task.

% doismotoresTF.m

f u n c t i o n do i s motoresTF

t t I n i t K e r n e l (4 , 2 , � prioRM �) ; %I n i c i a o k e r n e l com 4 en t r ada s e duas

%s a ı́ d a s . Pode - se e s c o l h e r � prioRM � e � prioEDF �

p e r i o d s = [0 .006 0 .005] ; %Per ı́ odo de cada t a s k

p r i o = [1 1] ; %P r i o r i d a d e de cada t a s k

names = { � motor1 � , � motor2 � } ;
Pc = { � P c o n t r o l l e r 1 � , � P c o n t r o l l e r 2 � } ; %Con t r o l a d o r e s d i f e r em no WCET das

t a s k s

rChans = [1 3] ; %S e l e c i o n a en t r ada + do k e r n e l

yChans = [2 4] ; %S e l e c i o n a en t r ada - do k e r n e l

uChans = [1 2] ; %S e l e c i o n a s a ı́ d a do k e r n e l

f o r i = 1 :2

da t a . h = p e r i o d s (i) ;

d a t a . u = 0 ;

o f f s e t = 0 ;

66

d a t a . I o l d = 0 ;

da ta .Do ld = 0 ;

d a t a . y o l d = 0 ;

da ta . rChan = rChans (i) ;

data .yChan = yChans (i) ;

data .uChan = uChans (i) ;

t t C r e a t eP e r i o d i cTa s k (names{ i } , o f f s e t , p e r i o d s (i) , p r i o (i) , Pc{ i } , data) ;

%c r i a t a s k

end

% P I c o n t r o l l e r 1 .m

f u n c t i o n [exect ime , data] = P c o n t r o l l e r (segment , data)

sw i t c h segment ,

ca s e 1 ,

i np (1) = t tAna l o g I n (da ta . rChan) ; %Lê en t r ada p o s i t i v a do k e r n e l

i np (2) = t tAna l o g I n (data .yChan) ; %Lê a en t r ada n e g a t i v a do k e r n e l

outp = t tCa l lB l o c kSy s t em (2 , inp , � PI2 �) ; %Ca l c u l a a aç ão de c o n t r o l e

%(WCET = 2ms)

da t a . u = outp (1) ;

e xec t ime = outp (2) ;

ca s e 2 ,

t tAna logOut (data.uChan , da t a . u) ; %Env ia o s i n a l de c o n t r o l e

exec t ime = - 1 ; % f i n i s h e d

end

